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Abstract 
 
 

Due to the recent rapid growth in personal mobile communication devices (smartphones, 

PDA’s, tablets, etc.), the wireless market is always looking for new ways to further miniaturize 

the RF front-ends while reducing the cost and power consumption. For many years, wireless 

transceivers and subsystems have been relying on high quality factor (Q) passives (e.g., quartz 

crystal, ceramics) to implement oscillators, filters, and other key RF front-end circuitry elements. 

However, these off-chip discrete components occupy large chip area and require power-

demanding interfacing circuits. As a result, a great deal of research effort has been devoted to the 

development of micromechanical resonators that are much more amenable to direct integration 

with integrated circuit (IC). 

Over the past few years, vibrating RF MEMS (Micro-Electrical-Mechanical-System) 

resonator technology has emerged as a viable solution, most notably, the film bulk acoustic 

resonator (FBAR) and surface acoustic wave (SAW) resonator, which have already been 

successfully implemented into commercial products. Undoubtedly, micromechanical resonators 

such as FBAR’s can perform as well as if not better than its bulky conventional counterparts and 

facilitate the miniaturization and power reduction of conventional RF systems. However, in some 

cases when multi-frequency functionality on a single-chip is needed, FBAR simply won’t 

deliver. 

 To address this dilemma, contour-mode MEMS resonators have been developed and 

regarded as the most viable on-chip high-Q alternative. Unlike FBAR, contour-mode resonators 
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ix 
 

use lateral dimensions to define its resonating frequencies, thus allowing for single-chip multi-

frequency functionality. However, there is still room for improvement with respect to lowering 

the motional resistance of these devices to allow matching to 50 Ω electronics, while retaining 

low power consumption, small size, and simpler manufacturing process. 

 This dissertation presents the design, fabrication, characterization and experimental 

analysis of two types of micro-mechanical resonators. Piezoelectrically- and electrostatically-

transduced micromechanical resonators will both be shown. Both types of resonator will be 

fabricated in the same micro-fabrication run, which makes the comparison between the two 

much more impartial. The impacts of substrate’s resistivity over the device performances will 

also be studied. 

 Among the most significant results, this dissertation also presents several ideas that are 

enabled by the use of silicon-on-insulator (SOI) wafer. A novel single-mask fabrication process 

that can produce capacitive resonator with nano-meter gap is demonstrated. The concept of dual-

transduced micro-mechanical resonator is introduced by combining both piezoelectric and 

capacitive based resonators. Finally, frequency tuning of MEMS resonator are explored and 

detailed in this work as well.    
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  Chapter 1
 
 

Introduction 
 
 

1.1  Overview 

Since the first wireless transmission in 1895 by Guglielmo Marconi, wireless 

communications have revolutionized the way how human and the society interact with one and 

another. Nowadays, wireless technologies are used in a wide variety of applications such as 

satellite transmission, radio and television broadcasting, sensor networks, global positioning 

system (GPS), mobile communications, and, most importantly, a new generation of 

multifunctional, small size, and low cost communication devices such as smartphones and lab-

on-a-chip systems. 

Due to the recent rapid growth multifunctional wireless communication devices, the 

wireless market is always looking for new ways to further miniaturize the RF front-ends while 

reducing the cost and power consumption. For many years, wireless transceivers and subsystems 

have been relying on high quality factor (Q) passives (e.g., quartz crystal, ceramics) to 

implement oscillators, filters, and other key RF front-end circuitry elements. However, these off-

chip discrete components occupy large chip area and require power-demanding interfacing 

circuits. As a result, a great deal of research effort has been devoted to the development of 

micromechanical resonators that are much more amenable to direct integration with integrated 

circuit (IC). 
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Over the past few years, vibrating RF MEMS (Micro-Electrical-Mechanical-System) 

resonator technology has emerged as a viable solution, most notably, the film bulk acoustic 

resonator (FBAR) and surface acoustic wave (SAW) resonator, which have already been 

successfully implemented into commercial products. Undoubtedly, micromechanical resonators 

such as FBAR can perform as well as if not better than its bulky conventional counterparts and 

facilitate the miniaturization and power reduction of conventional RF systems. However, in cases 

when multi-frequency functionality on a single-chip is needed, FBAR simply won’t deliver. 

To address this dilemma, contour-mode RF MEMS resonators have been developed and 

regarded as the most viable on-chip high-Q alternative. Unlike FBAR, contour-mode resonators 

use lateral dimensions to define its resonating frequencies, thus allowing for single-chip multi-

frequency functionality. However, there is still room for improvement with respect to lowering 

the motional resistance of these devices to allow matching to 50 Ω electronics, while retaining 

low power consumption, small size, and simpler manufacturing process. 

1.2  Modern Day Transceiver Architecture 

 A transceiver is a wireless device that consists of both a transmitter and a receiver that 

share a mutual circuitry. As the name suggested, a transceiver is responsible for transmitting and 

receiving radio frequency signals. A transmitter modulates, up-converts, and amplifies a local 

baseband signal into carrier frequency for transmission by the antenna. Contrarily, a receiver is 

to demodulate, down-convert, and filter the said signal transmitted over the air. Understandably, 

the design requirement for the receiver is much more critical and challenging to the overall 

performance of a wireless system since receiver has to process signals that have been distorted 

and interfered by the surrounding wireless noisy environment. 
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One of the most popular transceiver configurations is the super-heterodyne architecture, 

which has been used in the majority of wireless system since its invention by Edwin Armstrong 

in 1917. A general schematic of a modern day transceiver circuit is shown in Figure 1.1.  As 

shown in the schematic, a wireless signal has to go through a series of filtration, amplification, 

and signal processing. Amplification and signal processing have been successfully implemented 

with integrated circuit (IC) technologies. In contrast, the filtration aspect still requires the use of 

off-chip components such quartz crystals, surface acoustic wave (SAW) and bulk acoustic wave 

(BAW) devices. Even though BAW and SAW enabled oscillators and filters outperform their 

semi-conductor counterparts in terms of insertion loss, quality factor, and percent bandwidth, 

they are bulky and energy consuming. Moreover, these off-chip components need to be 

interfaced with IC circuit at the board level, thus hindering the miniaturization of transceiver. 

 
 

Figure 1.1 – Block diagram for a typical super-heterodyne transceiver 
 

 Although super-heterodyne transceiver architectures incorporating off-chip BAW and 

SAW devices fulfill the requirements for current wireless communication systems, as the 
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demand for high selectivity, high quality factor keep on increasing, our current technology 

implementation will not be able to keep up and provide satisfactory performance in regards of 

size and power consumption. Some efforts have been made in the development of alternative 

transceiver architectures such as direct conversion [1], low-IF [2], and RF sampling down-

conversion [3]. While these alternatives show great potential in solving our current dilemma [4], 

it still requires MEMS to provide the much needed high quality factor, IC compatible filter and 

oscillator. 

1.3  MEMS Technology Enabled Transceiver Architecture  

 

 
 

Figure 1.2 – Simplified block diagram of RF-MEMS-enabled channel select transceiver. 
 

 One of the most actively pursued methods for total transceiver IC integration is CMOS-

compatible RF MEMS technology. Not only has RF MEMS enabled the transceiver to have 

smaller foot print and lower power consumption, but it also improves the performance greatly. 
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The selectivity needed for architecture such as direct-heterodyning can only be obtained through 

RF MEMS. Selectivity, which is the ability to pick up the wanted signal while rejecting adjacent 

frequency interference, has become one of the most important characteristics of a receiver. The 

selectivity of a filter is determined by its quality factor, Q, given by: 

 
𝑄 =

𝑓0
𝐵𝑊

 
   (1.1) 

CMOS-compatible RF MEMS devices with Q >10,000 at GHz have been demonstrated 

previously [5], and the advancement in MEMS technology have made possible for the 

fabrication of on-chip RF MEMS components, such as RF switches [6], voltage controlled 

oscillators (VCO) [7, 8], and mixers. Figure 1.2 is an example of how a RF MEMS-enabled 

transceiver can be integrated into one single monolithic circuit by eliminating all the external 

components such as SAW, BAW devices, and the quartz crystals oscillators. Besides the size and 

power consumption reduction advantages stated above, the new RF MEMS-enabled transceiver 

architectures can create a new generation of reconfigurable multi-band, multi-frequency portable 

wireless communication devices, which one single transceiver IC can cover several services 

operating over a wide range of frequencies. 

1.4  Review of Current State of the Art 

The concept of micro-electromechanical (MEM) resonator was introduced for the first 

time in the 60’s by Nathanson [9]. Though the concept was sound, it wasn’t till the late 90’s that 

it started to be used in RF/MW applications due to the advancements in material science and 

fabrication process. Clark Nguyen [10] and William C. Tang [11] popularized RF MEMS 

concept by introducing comb drive mechanical systems as the major building block for RF/MW 

components – resonators and filters. These devices were capable at medium-frequency range 

(300 kHz to 3 MHz), and such band pass filter has shown 0.1 dB insertion loss [12]. Shortly 
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afterwards, MEMS for wireless communication started to garner mainstream attention, and as a 

result, a huge amount of effort have been devoted into extending the operational frequency to 

high-frequency (HF - 3 to 30MHz) and very high frequency range (VHF – 30 to 300 MHz), as 

well as widening the working bandwidth. Free-free beam poly-silicon resonators were 

successfully demonstrated operating at frequencies from 30 to 100 MHz with quality factors as 

high as 8,400 in vacuum [13]. It is further proven that a bandpass filter with 4 dB insertion loss 

and 1.7% bandwidth at 37 MHz can be realized using the free-free beam resonator as the 

building block as shown in Figure 1.3 [14]. 

  
(a) (b) 

 
Figure 1.3 – (a) A 37 MHz VHF free-free beam mechanical filters. (b) Transmission response of 
the filter measured under 50 µtorr and the equivalent model simulation. 
 

1.4.1 Electrostatically-Transduced MEMS Resonators 

As the need for frequency got pushed higher and higher, it is necessary to scale down the 

structure’s geometry to meet the demand, however, these actions bring unfavorable effects upon 

the traditional MEMS beam vibrating structures. As the dimension of the mass body goes down, 

its anchor started to become in-dismissible, such that it created mass loading effect on the 

structures, lowering the Q, deteriorates the intended designs. Moreover, these types of devices 

require to work under vacuum in order to obtain its optimum performances at higher frequencies. 

To address these issues, Clark introduced the contour-mode MEMS resonator. Opposite to the 
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beam type resonator, its electrostatic force was being supplied to the structure in the lateral 

direction causing the mass body to expand/contract along its radius/length/width. Clark was able 

to demonstrate mechanical resonator at 156 MHz with Q exceeding 9,400 under atmospheric 

pressure [15]. Another major benefit of contour-mode actuation scheme is the device size. Under 

the same operating frequency, the footprint of a contour-mode resonator is still larger than the 

beam type, in other words, it has more headroom to scale down to further pursue higher 

operating frequencies. 

  
(a) (b) 

 
Figure 1.4 – Micromechanical contour-mode disk resonator operating at 156 MHz under 
atmospheric pressure. (a) SEM image of the resonator. (b) Transmission response. 
  

One of the most important breakthroughs in capacitive resonator should be credited to 

Wang’s work on the self-aligned radial contour-mode disk resonator.  The self-aligned stem 

introduced by Wang pushed the performance of such device to the next level. With the 

incorporation of nano-crystalline diamond (NCD), the disk resonator was able to show Q at 

around 3000 while resonating at 1.156 GHz under atmospheric pressure [16]. The novel design 

in the self-aligned anchoring stem and implementation of diamond material helped reduce the 

mechanical loss significantly allowing resonator to have extremely high Q while not sacrificing 

any aspects of the power handling and structure size. Following the radial contour-mode 
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resonator, the wine glass mode disk resonator was demonstrated [17]. Albeit operating at a lower 

frequency, its unique resonating mode allows the resonator to have non-intrusive anchoring 

scheme resulting in Q exceeding 100,000 at 74 MHz [5].  

   
(a) (b) 

 
Figure 1.5 – (a) SEM image of a self-aligned radial contour-mode disk resonator. (b) Frequency 
response of the resonator at its 3rd order mode resonating frequency – 1.156 GHz. 

 

Despite the high-Q and frequency range achieved by radial contour disk resonators, their 

large motional impedance (> 1 MΩ) is far too high to be integrated with conventional 50 Ω RF 

components. Several strategies have been proposed such as replacing the capacitive air gap that 

is employed by most of capacitively-transduced resonators with a solid gap filled by high-k 

dielectrics or reducing the gap to sub-micron range (<100 nm). Capacitive resonators with sub-

100 nm air and solid gaps operating at VHF and UHF range have been successfully 

demonstrated with Q as high as 20,000 and motional impedances less that 10 kΩ [18-20]. 

In 2009, Weinstein et al. [21] introduced a longitudinal-mode silicon acoustic resonator 

with internal dielectric films. A 6.2 GHz electrostatically-transduced silicon bar-shaped resonator 

with 15 nm nitride solid gap and quality factor above 4,000 has been demonstrated. As shown in 

Figure 1.6, the frequency-Q product of 3.1×1013 at 4.7 GHz is the highest ever reported in 

micromechanical resonators [17]. 
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(a) (b) 
 
Figure 1.6 – (a) SEM image of an internal dielectrically-transduced resonator. (b) Frequency 
response at different resonant frequencies. 
 

Even with all these efforts in pushing the envelope of the performances for capacitive 

MEMS resonator, there has always been another underlying problem: its complex fabrication 

process. In order to achieve precise anchor alignment and sub-micron capacitive gap junctions, 

often time it requires sophisticated fabrication process and demanding techniques. To deal with 

this problem, Pourkamali et al. [22, 23] have demonstrated techniques such as thick oxide mask 

and trench refill to simplify the fabrication of such resonators. However, the trade-off for the 

simplified process is usually the ultimate gap size. When shooting for sub-micron nano-gap, 

aspect ratio of the trench becomes a major concern. The side wall of high aspect trenches often 

experiences striation and taping effect causing variation in gap distance along the top and the 

bottom. On the other hand, gap reduction technique often resulted in non-uniform gap shrinkage. 

The top of the trench got reduced faster than the bottom creating air pocket. Although these 

techniques can produce gap as small as 100 nm, it is still quite challenging to push for the 

minimum gap junction 50 nm or below. 
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1.4.2 Piezoelectrically-Transduced MEMS Resonators 

Another popular type of resonator is the piezoelectric material based vibrating structure. 

Unlike the capacitive based resonator, which will work with most of the conductive materials 

(metal, polysilicon, doped diamond, etc.), piezoelectric resonator’s working principle relies on 

the piezoelectric effect of certain material where charges are generated when deformed, and vice 

versa. Some of the most common materials are Zinc Oxide (ZnO), Aluminum Nitride (AlN), 

Barium Titanate and Lead-Zirconate-Titanate (PZT). These types of material offer order of 

magnitude higher electrical mechanical coupling coefficient than their capacitive counter parts. 

As a result, lower motional impedance can be easily obtained, hence making the piezoelectric the 

dominant technology within the current RF/MW wireless applications. 

Due to the aforementioned advantages, piezoelectric resonators such as surface acoustic 

wave (SAW) and bulk acoustic wave resonator (BAW) have already been implemented in mass 

consumer electronics, which are currently the two most important classes of piezoelectric 

resonators. 

 
 

Figure 1.7 – Schematic of a typical SAW resonator. 
 

SAW devices are highly capable at frequency lower than 2 GHz (Figure 1.7). However, 

as current mobile communication kept on pushing for higher frequency and more spectrum real 
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estate, SAW devices have reached its limit. As frequency approaches 3 GHz, SAW devices’ Q 

dropped dramatically, and its electrodes approach sub-micron scale making it economically 

unfeasible for mass production [24]. 

  
(a) (b) 

 
Figure 1.8 – BAW resonators with different types of acoustic isolation mechanisms: (a) air 
cavity, and (b) Bragg’s Reflector. 

 

On the other hand, BAW resonators (Figure 1.8) have attracted attention since its 

introduction by Lakin et al. [25], due to its simple electrode design, higher quality factor, sharp-

cut off characteristic, high frequency range, and the possibility of realizing monolithic filters 

devices with active RF devices. At the moment, two main variants of BAW filters have been 

successful commercialized on the wireless market: film bulk acoustic wave resonator, FBAR 

[26], in which the resonant structure isolated from the carrier substrate via air gaps, and solid 

mounted bulk acoustic resonator (SMR) [27], which uses Bragg acoustic reflectors as method of 

isolation. Nonetheless, despite BAW devices’ astounding performances, it still suffers one major 

flaw:  the operating frequency is determined by the piezoelectric film’s thickness. Therefore, in 

order to achieve precise frequencies, the thickness of the piezoelectric film must be accurately 

controlled. For this reason, single-chip multi-frequency selective array cannot be fabricated on 

the same substrate. Accordingly, the BAW device is often dealt as an off-chip component 

undermining the goal of integrating RF MEMS with transistor circuits. Nevertheless, the present-
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day telecommunication progression demands for single-chip multi-frequency transceivers that 

operate over a wide range of services as opposed to discrete components integrated on board 

level. 

Similar to the evolution of capacitively-transduced counterparts, contour-mode excitation 

method also finds its place in the piezoelectric material based resonators. Piazza et al. introduced 

and have successfully demonstrated a contour-mode piezoelectric resonator (see Figure 1.7 

below) [28-30]. Multiple AlN resonators with operating frequency ranging from 23 MHz to 230 

MHz have been demonstrated with high Q (around 4000) and low motional impedance (50 to 

700 Ω). These single resonators were also cascaded into L-ladder network yielding low loss (I.L. 

~ 4 dB) and high rejection bandpass filters. Its operating frequency was determined by its lateral 

dimension which makes single-chip multi-frequency implementation feasible, and yet it still 

retained all the advantageous characteristic of a BAW device (low motional resistance, high Q, 

and flexible frequency range). 

  
(a) (b) 

 
Figure 1.9 – (a) SEM image of a bandpass filter formed by piezoelectric resonator in L-ladder 
configuration. (b) Transmission response of the filter. 
 

A conventional piezoelectric device uses the piezoelectric material itself as the resonant 

body structure. Unfortunately, its material advantages (high mechanical coupling coefficient) 
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also become its very own drawback, namely, unsatisfactory mechanical properties. A mechanical 

resonator’s operating frequency is highly dependent upon the structure body’s Young’s modulus 

and material density, and as mentioned before, there are only three kinds of material suitable for 

piezoelectric resonators, which, ultimately, restricted the development of such technology in 

higher frequency domain. In order to relieve this issue, Abdolvand introduced a new generation 

of piezoelectric resonator called thin-film piezoelectric-on-substrate (TPoS) resonators, which 

separated the driving and resonating aspects of a mechanical resonator by putting a thin layer of 

piezoelectric on top of a Si body [31]. By combining piezoelectric material’s high electrical 

mechanical coupling and Si’s superior mechanical properties, a low motional impedance 

mechanical resonator with Q on par to the capacitive counterpart were successfully 

demonstrated. TPoS Resonator has been utilized to fabricate UHF filters in a single substrate. 

Using the same technology, thickness mode filters have also been demonstrated at frequencies 

ranging from 600 MHz to 3.4 GHz with motional impedance less than 700 Ω as shown in Figure 

1.5 below [32, 33]. 

  
(a) (b) 

 
Figure 1.10 – (a) Electrical response and SEM image of a 435-MHz of lateral monolithic filter. 
(b) Measured frequency response plots and the SEM picture of 3.5 GHz thickness mode 
monolithic TPoS filters. 
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1.5  Summary of Current State of the Art 

There is no doubt capacitively-transduced micromechanical resonator can achieve quality 

factor and operating frequency that cannot be matched by piezoelectric counterparts. However, 

these devices usually suffer from high motional impedance which leads to high insertion loss if 

interfaced with standard RF 50 Ω system. Although efforts have been made in reducing the 

motional impedance by shrinking the actuating gap down to sub-100 nm, its highly complex 

fabrication process still poses as a challenge when compared to its piezoelectric counterparts. 

Moreover, the process often involved the use of non-standard semi-conductor processing 

materials and equipment. In order to achieve the goal of true integration between capacitive 

MEMS resonator and CMOS circuitry, the fabrication process need to do without the use of such 

exotic materials and equipment. 

MEMS resonator based on piezoelectric effect have already reached a phase of maturity. 

As SAW and BAW devices have been produced in large volumes and used in mass-produced 

commercial electronics for more than a decade. Nonetheless, they are still off-chip component 

that won’t be able to satisfy the need for the much more demanding system-on-a-chip 

applications. Instead, contour-mode piezoelectric resonators have been demonstrated to be the 

idea technologies at VHF and UHF with moderate Q and low insertion loss. However, their 

performances still rely vastly on the mechanical and electrical properties of the piezoelectric 

layer, which limited the freedom of design. Though piezoelectric variations such as TPoS 

configuration mitigate the limited material selection, it sacrifices some its electrical mechanical 

coupling. 
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1.6  Dissertation Organization 

This dissertation is organized into six chapters. The first chapter presents an overview of 

the current state of the art technologies and describes the goals of this dissertation research. 

Chapter 2 reviews fundamentals and basic formulations for both piezoelectric and capacitive 

types of resonators. Additionally, the equivalent mechanical and electrical lumped circuit 

representation for the MEMS resonators are presented here as well.  

The micro-fabrication process and experimental results for the piezoelectric resonators 

and filters are detailed in Chapter 3. Similarly, the micro-fabrication process and experimental 

results for capacitively-transduced resonators are shown in chapter 4. Chapter 5 presents several 

ideas such as single-mask nano-gap capacitive resonator, dual-transduced resonator, and 

frequency tuning enabled by the use of silicon-on-insulator (SOI) wafers. Studies of substrate 

resistivity’s impact over the performance of the fabricated resonators are shown in this chapter as 

well.  

Chapter 6 summarized the results and the accomplishments of this work. In addition, 

possible directions for future research topics are presented in the end.  

1.7  Contributions 

The main contribution from this dissertation work is the complete study of both types of 

resonators. Both piezoelectric and capacitive resonators have been fabricated, measured, and 

studied. Both resonators are fabricated under the utmost identical conditions, using the same 

substrate and undergo the same process equipment and materials, which, to the author’s best 

knowledge, yield the most unbiased comparison study of both resonators to date. The study of 

the substrate resistivity’s impact is much clearer since the comparison test is carried out on the 
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same substrate. It sheds more lights on which type of resonator is more prone to the feedthrough 

parasitic. 

Two innovative ways to simplify the fabrication process for capacitive resonator with 

nano-meter dielectric gap have been demonstrated. By combining the techniques of chemical 

mechanical polishing (CMP) and deep reactive ion etching (DRIE), it is possible to produce sub-

100 nm gap resonator within one or two photolithography steps. 

 In addition, a robust and high-yield micro-fabrication process for thin-film ZnO-on-

silicon resonators has been successfully developed. The process is compatible with standard 

CMOS foundry process with thermal budget well below the required 400ºC, which facilitates 

future monolithic transceiver integration between RF MEMS and CMOS electronics. 

This work also demonstrates a tunable piezoelectric resonator. Not only the tuning 

mechanism is reversible, it is also fairly simple to achieve such configuration due to the use of 

silicon-on-insulator (SOI) wafer. Substrate’s resistivity impact on both types resonator is studied, 

and equivalent model is developed to aid future design of MEMS resonator. Moreover, efforts 

have been made in attempting to create a brand new concept of resonator by combining both 

piezoelecrtric and capacitive driven mechanisms into one dual-transduced resonator. 
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  Chapter 2
 
 

Background 
 
 

Electrostatically- and piezoelectrically-transduced resonators use two different types of 

driving mechanism, but their working principals are essentially the same. In either type of 

resonator, the goal is to excite the vibration body system into resonance mode by supplying 

mechanical forces that match the mechanical structure’s resonance frequency. In piezoelectric 

resonator, the mechanical excitation is provided through piezoelectric material itself. When 

electric field is applied to the piezoelectric thin film, the film is then deformed accordingly. If 

said sinusoidal electric field matches the resonance frequency of the mass body, the structure is 

then driven into its resonating mode. This behavior is called piezoelectric effect. On the other 

hand, an electrostatic (also known as capacitive) resonator operates in the same way. The goal is 

to drive the mass body, usually a conductive material, into resonance mode. However, since 

capacitive resonator does not have the advantage of built-in characteristic like piezoelectric 

effect, it requires the use of external electrostatic force to supply the necessary mechanical 

excitation to drive the mass body into resonance. 

Detailed discussion with regards to the resonance frequency, piezoelectric effect, and 

material properties are presented in this chapter. Mechanical and electrical equivalent model are 

also provided to facilitate the simulation of MEMS devices as an electrical circuit component in 

hope of aiding integration between MEMS and conventional electronic circuitry. 
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2.1  Piezoelectric Effect 

Piezoelectricity was first discovered in 1880 by the brothers Pierre Curie and Jacques 

Curie. Following the discovery, the first engineering application using piezoelectricity 

characteristic was an ultrasonic sensor for submarine detection in 1916 by Paul Langevin. 

Eventually, this leads to the invention of mechanically vibrating crystal knows as the quartz 

crystal, which is now implemented in many engineering applications such as microphones, 

sensors, transducers, and frequency/timing circuits. Most importantly, quartz crystal has become 

the building block for the ever continuously growing radio-telecommunications industry. The 

piezoelectric effect is understood as the linear electromechanical interaction between the 

mechanical and the electrical state in crystalline materials with no inversion symmetry [34]. 

When a mechanical stress/force is applied to the piezoelectric material, the material is able to 

generate an electric charge. This behavior is known as the direct piezoelectric effect. Conversely, 

one can generate mechanical deformation in a piezoelectric material by supplying an electrical 

field. This is behavior is known as reverse piezoelectric effect. Piezoelectric effect is a reversible 

energy conversion mechanism. Figure 2.1 below summarize the phenomenon of piezoelectric 

effect. 

 
 

Figure 2.1 – Illustration of the  direct and reverse piezoelectric effects [34]. 

http://en.wikipedia.org/wiki/Pierre_Curie
http://en.wikipedia.org/wiki/Jacques_Curie
http://en.wikipedia.org/wiki/Jacques_Curie
http://en.wikipedia.org/wiki/Piezoelectricity#Mechanism
http://en.wikipedia.org/wiki/Centrosymmetry
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2.2  Piezoelectric Materials 

Although there are several ceramic materials that exhibit piezoelectric effect, the most 

readily available materials are Aluminum nitride (AlN), Zinc oxide (ZnO), Barium titanate 

(BaTiO3) and Lead-Zirconate-Titanate (PZT). Table 2.1 below summarizes the properties of 

these materials. BaTiO3 is an excellent material for transducer applications because of its high 

electromechanical coupling coefficient and ease of fabrication. However, it also has high thermal 

expansion coefficient and low Curie point prohibiting itself from being further developed. PZT 

has taken the place of BaTiO3 and become the most used material in off-chip piezoelectric 

applications due to its high electromechanical coupling factor and low thermal expansion 

coefficient. However, PZT contains the element of lead, and it is not compatible with many 

CMOS technology and foundry processes employed today. 

 

 Currently, AlN and ZnO are the most used piezoelectric materials in MEMS applications. 

High quality AlN and ZnO films can be obtained by sputter deposition at a relatively low 

temperature (< 400 °C) which is compatible with CMOS technology. Unlike PZT, AlN and ZnO 

are not ferroelectric, where PZT can easily exhibit high electromechanical coupling coefficient 

without special deposition condition. Both AlN and ZnO require individually tuned deposition 

conditions in order to obtain quality film with high electromechanical coupling coefficient.  

Table 2.1 – Properties of most common piezoelectric materials [34-36]. 
 

Material Density 
(kg/m3) 

Dielectric 
Constant 

Acoustic 
Velocity 

[m/s] 

Piezoelectric 
Coefficient d31 

[pC/N] 

Temperature 
Expansion 
Coefficient 

Quartz 2650 3.8-4.5 3158 2 0.6 × 10-6/°C 
BaTiO3 6020 1500 4800 33.4 0.5 × 10-6/°C 

PZT 7600 400 – 1000 3300 180 -6.0× 10-6/°C 
ALN 3270 8 11400 1.8 4.5 × 10-6/°C 
ZnO 5766 8.8 6330 4.7 4.0 × 10-6/°C 
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2.3  Mathematical Model of the Piezoelectric Effect 

Since piezoelectric materials are anisotropic, their physical properties (e.g., permittivity, 

elasticity, and piezoelectricity coefficients) are vector quantities. The electrical behavior of a 

piezoelectric material can be expressed as: 

 𝐷3𝑥1 = ε3𝑥3𝐸3𝑥1 (2.1) 

where D is the electric density displacement, ε is the dielectric constant, and E represents the 

electric field. Equivalently, the mechanical behavior of piezoelectric materials is modeled using 

the Hooke’s law which describes the stress-strain relationship of material which is given by: 

 𝑆6𝑥1 = 𝑐6𝑥6𝑇6𝑥1 (2.2) 

where S represents the strain, c is the compliance, and T is the stress. These equations can be 

combined into a coupled equation, which relate the mechanical and electrical variables and 

completely described the behavior of piezoelectric materials. The fundamental electro-

mechanical coupled equation is given by: 

 𝑇6𝑥1 = 𝑐6𝑥6 ∙ 𝑆6𝑥1 − 𝑒6𝑥3 ∙ 𝐸3𝑥1 (2.3) 

 𝐷3𝑥1 = 𝑒3𝑥6 ∙ 𝑆6𝑥1 − ε3𝑥3 ∙ 𝐸3𝑥1 (2.4) 

 These sets of equations are known as the stress-charge form of the piezoelectric equations 

or d-form piezoelectric equations. 

2.4  Operating Principle of MEMS Resonators 

Outside of excitation force mechanism, there is little difference to how an electrostatic 

and piezoelectric resonator operates. The resonating frequency/mode of a particular structure is 

pre-determined by the structure’s physical geometry and material’s mechanical properties. If 

given the same geometry and mechanical properties, both piezoelectrically- and electrostatically-

transduced resonator will have the same response in resonant frequency. 
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2.4.1 Piezoelectric MEMS Resonators 

A piezoelectrically-transduced MEMS resonator consists of a piezoelectric body 

suspended from a tethered anchor, and it is sandwiched in-between two metal electrodes as 

shown in Figure 2.2(a). When a sinusoidal electrical signal is applied, the piezoelectric effect 

takes place and excites the body mass into motion. These electrodes are strategically patterned 

and positioned with respect to each application. Depending on the location and size, it is possible 

to achieve multi-port or multi-mode response for frequency filtering applications.  

 

 

(a) (b) 
 
Figure 2.2 – Schematic-view diagram of a piezoelectric 1-port square-plate resonator (a) and a 2-
port circular-disk capacitive resonator (b). 
 

Even with the same pattern of electrodes, the same structure of piezoelectric resonator 

can be excited in different frequencies. As shown in Figure 2.3, multiple resonating modes can 

co-exist within one specific structure. A device like Figure 2.2(a) can be actuated either in 

thickness-mode (by means of 𝑑33), lateral shear-mode (by means of 𝑑15), or contour-mode (by 

means of 𝑑31).   

According to the applications, some situations are desired to have multiple modes to co-

exist forming a filter response. Contrarily, some applications require the suppression of all 

modes other than the targeted frequency to produce the strongest and cleanest signal response. 
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Figure 2.3 – Vibration modes of a piezoelectric rectangular plate resonator [37]. 
 

2.4.2 Capacitive MEMS Resonators 

Similarly, a capacitive resonator just means the mechanical force is in the form of parallel 

plate electrostatic force instead of piezoelectric effect. As shown in Figure 2.2(b), the parallel 

plate surface is formed between the resonant body and the electrode. The gap of the parallel plate 

has to be small enough so the electrostatic force is more effective to drive the body into 

resonance mode. Usually, the gap distance is on the order of 100 nm or smaller. 

The parallel plate formation is essentially a parallel plate capacitor. Equation (2.5) below 

shows the total charge (Q) residing within the capacitor, where V is the constant polarization DC 

voltage between the body and the electrode.  

 𝑄 = 𝑉 ∗ 𝐶 (2.5) 

When a sinusoidal signal is applied, the gap distance is varying with respect to time due 

to the exerted electrostatic force on the resonating body. Apply differentiation with respect to 

time to equation (2.5), and the result becomes: 
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 𝑑𝑄
𝑑𝑡

= 𝐼𝑜𝑢𝑡 = 𝑉 ∗
𝑑𝐶
𝑑𝑡

 (2.6) 

As shown in equation (2.6), the output current (Iout) of sense electrode is strongly 

correlated to the DC bias voltage and the gap capacitance. In other words, the performance of a 

capacitive resonator relies heavily on the capacitor’s dielectric gap material and distance. 

2.4.3 Thin-film Piezoelectric-on-Silicon (TPoS) Resonators 

 An alternative design known as thin-film piezoelectric-on-silicon (TPoS) resonator is 

shown in Figure 2.4. A TPoS resonator is essentially a piezoelectric resonator sitting on top of a 

Si mass body. Compared to piezoelectric material, Si is a much superior material with low 

acoustic loss. When a sinusoidal electric field is applied across the piezoelectric film between the 

top and bottom electrodes, instead of resonating with the piezoelectric thin film, the device is 

excited into silicon’s resonance mode. The applied electrical field across the piezoelectric-film 

will drive the Si resonator body to expand and contract through the converse piezoelectric effect. 

In return, the body’s physical deformation induces periodic piezoelectric charges on the surface 

of the output electrodes. The piezoelectric related resonator works presented in this work are all 

done in the TPoS configuration. 

 
 

Figure 2.4 – 1-port piezoelectric on substrate resonator 
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2.5  Contour-Mode Resonators 

From Figure 2.3, it is shown that one specific structure can have multiple modes of 

resonance, and it doesn’t matter if it is a piezoelectric or capacitive type. Even for capacitively-

transduced resonators, it is possible to form the parallel plate in the vertical direction to excite it 

in the thickness mode. However, if the device operates in the thickness mode, it is then called a 

FBAR device, where the thickness of the piezoelectric film determines the resonating frequency. 

As mentioned in previous chapter, FBAR is not desired for multi-frequency integrating 

applications since the thickness only allows one operating frequency. For devices operating in 

shear-modes, the electrical field must be applied perpendicular to edges of the plate in order to 

drive the structure into resonance, which is a very challenging feat, thus complicating the 

fabrication process. 

For the contour-mode, the resonance frequency is set by the lateral dimension (i.e. radius, 

length, width) of the structure. Such dimensions can be precisely and easily defined by the 

device CAD layout, All the resonator studies presented in this work are designed to operate in 

the contour-mode. Most of the designs are in the shape of circular disk and rectangular plate. 

2.5.1 Contour-Mode Circular Disks 

Figure 2.5 presents the finite element modal analysis of a 60 µm-diameter ZnO TPoS 

resonator using CoventorWare. The structure consists of 15µm-thick silicon device layer, a 500 

nm-thick ZnO piezoelectric film, and a set of top and bottom metal electrodes. This 

configuration permits the excitation of the radial contour-mode and the wine glass mode that 

operates at different resonance frequency. To minimize the loss of acoustic energy through the 

anchor (not shown here), it is the best practice to place the anchor at a nodal point (blue part in 

the simulation figures) where it has the least amount of displacements. If such locations are in-
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accessible, the anchor dimensions are best designed to have the smallest width that is possible, 

and with length equals to multiples of quarter wavelength with respect to the resonance 

frequency. A simplified frequency equation for a disk resonator vibrating in a radial contour-

mode is given by [38]: 

 𝑓𝑜 =
α
𝑅�

𝐸𝑝
𝜌𝑝(1 − 𝜇2)

 (2.7) 

where 𝐸𝑝 , 𝜌𝑝 and 𝜇 represent the material’s Young’s modulus, density and Poisson’s ratio of the 

structural material respectively. 𝑅 is the radius of the disk, and α is a mode dependent scaling 

factor. For example, if 𝜇 = 0.3, then α equals to 0.342 and 0.272 for the first radial contour-

mode, and the fundamental wine glass mode, respectively. 

  
(a) (b) 

 
Figure 2.5 – Finite-element simulation of a ZnO-on-silicon disk resonator in its (a) fundamental 
radial contour-mode at 91.5 MHz and (b) wine-glass mode at 67.5 MHz. 
 

 In idea situation, the mechanical vibrating body should only consists of only the 

mechanical vibrating mass, however, without proper circuitry such as electrodes and transducers, 

one cannot function as a proper electrical device. Therefore, it is inevitable to attached extra 

weight (i.e. electrodes) to the mechanical vibrating body, thus the term mass loading effect. The 
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add-on weight tends to damp the total acoustic energy which degrades the overall performance. 

In order to model the mass loading effect more effectively, the resonance frequency Equation 

(2.7) is modified as below: 

 𝜌𝑒𝑞 =
𝜌𝑡𝑜𝑝𝑇𝑡𝑜𝑝 + 𝑇𝑏𝑜𝑡𝑡𝜌𝑏𝑜𝑡𝑡 + 𝜌𝑝𝑇𝑝 + 𝜌𝑑𝑒𝑣𝑇𝑑𝑒𝑣

𝑇𝑡𝑜𝑝 + 𝑇𝑏𝑜𝑡𝑡 + 𝑇𝑝 + 𝑇𝑑𝑒𝑣
 (2.8) 

 𝑣𝑒𝑞 = �
𝐸𝑝𝑇𝑝 + 𝐸𝑡𝑜𝑝𝑇𝑡𝑜𝑝 + 𝐸𝑏𝑜𝑡𝑡𝑇𝑏𝑜𝑡𝑡 + 𝐸𝑑𝑒𝑣𝑇𝑑𝑒𝑣

�𝜌𝑡𝑜𝑝𝑇𝑡𝑜𝑝 + 𝑇𝑏𝑜𝑡𝑡𝜌𝑏𝑜𝑡𝑡 + 𝜌𝑝𝑇𝑝 + 𝜌𝑑𝑒𝑣𝑇𝑑𝑒𝑣�(1 − µ2)
�
1 2⁄

 (2.9) 

 𝑓𝑜 =
α
𝑅
𝑣𝑒𝑞 (2.10) 

where 𝑣𝑒𝑞 and 𝜌𝑒𝑞 represents the equivalent acoustic velocity and equivalent density of the 

resonator of a TPoS resonator structure respectively. Substitute the equivalent mass and velocity 

into Equation (2.7) comes Equation (2.10). 

A similar analysis could be carried out for equivalent Poisson’s ratio. However, for 

simplicity, a Poisson’s ratio of  𝜇 = 0.3 has been kept as constant. The changes in Poisson’s ratio 

have little impact on the overall frequency shift. The mechanical properties of the materials used 

for the development of MEMS resonators in this work are listed in Table 2.2. 

Table 2.2 – Mechanical properties of materials used for the development of MEMS resonators. 
 

Material Young's Modulus (GPa) Density (Kg/m3) Poisson's ratio 
Si 170 2329 0.226 

ZnO 123 5676 0.330 
Al 70 2700 0.350 
Pt 168 21450 0.380 

 

 

 The equivalent mass, 𝑀𝑒𝑞, can be obtained by dividing the total kinetic energy by one 

half of the velocity square at any location of the micromechanical resonator [39]. The mass at the 

disk perimeter can then be obtained using the relation: 
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 𝑀𝑒𝑞 =
2𝜋𝜌𝑒𝑞𝑇𝑒𝑞 ∫ 𝐽12 �

𝜔𝑛
𝑣𝑒𝑞

𝑟� 𝑑𝑟𝑅
0

𝐽12 �
𝜔𝑛
𝑣𝑒𝑞

𝑟�
 (2.11) 

where 𝐽1 is the Bessel function of the first kind. The contour-mode electromechanical coupling 

coefficient can then be calculated as: 

 η =
𝑄𝑇𝑜𝑡𝑎𝑙
𝑢𝑚𝑎𝑥

=
2𝐸𝑝

1 − µ
��

𝜕𝑢𝑟
𝜕𝑟

+ �
𝑢𝑟
𝑟

+
1
𝑟
𝜕𝑢𝜃
𝜕𝜃

��𝑑𝐴 ≈ 𝐸𝑝𝑑31π
𝑅
2

 (2.12) 

Please note Equation (2.12) is derived specifically for the circular disk resonator with two 

splitted top electrodes that each covers half of the resonator body.  

2.5.2 Contour-Mode Rectangular Plates 

For a contour-mode rectangular plate resonator as shown in Figure 2.6, the resonance 

frequency can be calculated from a series of differential equations knows as the wave equations 

[38]. It is worth noting that the example given here is greatly simplified, but this analysis method 

can be extended to different geometries and mode shapes. 

 
 

Figure 2.6 – Longitudinal-mode rectangular plate resonator [40]. 
 

Please refer to R. A. Johnson et al. [38] for a more detailed analysis of this technique. 

The analysis for the rectangular plate starts with the wave equation: 
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𝐸
ρ
∂2𝑢
∂𝑥2

= −ω2𝑢 (2.13) 

where 𝐸, ρ, 𝑢, represents the Young’s modulus, density of the material, and the displacement, 

respectively. Using the theory of linear differential equations, the general solution to Equation 

(2.13) is expressed as follows: 

 𝑢(𝑥) = 𝐴 sin𝑘𝑥 + 𝐵 cos𝑘𝑥 (2.14) 

where 𝑥 is the coordinate in the length direction, and 𝑘 is the propagation constant. By applying 

boundary condition, x = 0, to Equation (2.14), the value of 𝐴 can be found as: 

 ∂𝑢
∂𝑥
�
𝑥=𝑙

𝑥=0

= 𝐴𝑘 cos𝑘𝑥 − 𝐵𝑘 sin 𝑘𝑥 = 0 (2.15) 

 𝐴𝑘 cos 𝑘𝑥 − 0 = 0, or 𝐴 = 0 (2.16) 

 𝑢(𝑥) = 𝐵 cos 𝑘𝑥 (2.17) 

Applying the boundary condition at 𝑥 = 𝑙 to Equation (2.15), it gives: 

 sin𝑘𝑙 = 0, for 𝑘𝑛𝑙 = 𝑛π , 𝑛 = 1,2,3, … .. (2.18) 

By substituting Equation (2.17) in the wave Equation (2.13), term k can be expressed as 

follows: 

 𝑘 = ω�
ρ
𝐸

 (2.19) 

Next we substitute the values of 𝑘𝑛 from Equation (2.18) into Equation (2.19) and solve 

for the frequency, then it gives the resonance frequency of a rectangular plate vibrating along its 

length in the nth mode: 

 𝑓𝑛 =
𝑛
2𝑙
�
𝐸
ρ

 (2.20) 
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2.6  Mechanical Resonator Modeling 

Over the years, a vibration mechanical system consists of spring, mass, and damper has 

been associated directly with electrical system analog. A mechanical resonator is no different 

than a convention mechanical vibrating system albeit the micro-scale size. Therefore, it is 

possible to define the mechanical behavior of MEMS resonator by equivalent electrical 

components using mechanical-electrical analogy. A spring and mass within a mechanical system 

store energy as potential and kinetic energy, just like capacitor and inductor store energy in 

electric and magnetic field. Similarly, a mechanical damper dissipates energy into heat, just as a 

resistor dissipate current into heat. Regardless of the shape or type of the MEMS resonator, this 

analogy is always applicable. Table 2.3 summarizes the analogy between the mechanical and 

electrical domain, where mechanical parameters such as force and velocity correspond to 

electrical variables such as voltage and current. 

Table 2.3 – Direct analogy between electrical and mechanical domain 
 

Mechanical Domain ↔ Electrical Domain 

Force F ↔ Voltage V 
Velocity 𝑢̇ ↔ Current I 
Mass 𝑀𝑒𝑞 ↔ Inductance 𝐿𝑚 
Compliance 1 𝐾𝑒𝑞⁄  ↔ Capacitance 𝐶𝑚 
Damping 𝐶𝑒𝑞 ↔ Resistance 𝑅𝑚 

 

 

Using the electrical-mechanical analogy, the lumped-element mechanical model 

representation (Figure 2.7(a)) can be transformed entirely using electrical lump elements (Figure 

2.7(b)). The equivalent electrical circuit consists of a series LCR tank, two transformers, and an 

input/output port capacitance. The two transformers here represented the electro-mechanical 

coupling efficiency (η) of the MEMS resonator. With the electric equivalent model identified, 

the task of integrating MEMS devices and convention circuitry has become much more feasible. 
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(a) 

 
(b) 

 
Figure 2.7 – Equivalent lumped-element model of a micromechanical resonator [40]. (a) 
Equivalent mass-spring-damper model; (b) Equivalent LCR circuit model. 
 

2.7  Model Parameters for Equivalent Electrical Circuit 

Continuing from previous section, the equivalent electrical parameters of a resonator can 

be extracted given the properties from the mechanical domain. The example given here is for a 

rectangular shaped resonator device only. For the case of a rectangular piezoelectric plate 

vibrating along its length, the electrical parameters can be calculated by [28]: 

 𝑀𝑒𝑞 =
ρ𝑙𝑤𝑇

2
=
𝑀𝑠𝑡𝑎𝑡𝑖𝑐

2
 (2.21) 

 𝐶𝑒𝑞 =
ω𝑛𝑀𝑒𝑞

𝑄
 (2.22) 

 𝐾𝑒𝑞 = ω𝑛2𝑀𝑒𝑞 (2.23) 

where 𝑤, 𝑙 and 𝑇 are the width, length and thickness of the resonator respectively. 𝑄 is the 

quality factor, and ωn is the resonant frequency for the nth resonance mode. The 

electromechanical coupling coefficient can be determined as: 
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 η =
𝑄𝑇
𝑢𝑚𝑎𝑥

 (2.24) 

where 𝑄𝑇 is the total charge induced on the electrodes, and 𝑢𝑚𝑎𝑥 is the maximum displacement. 

With the use of Table 2.3, mechanical variables can now be converted into electrical parameters 

as follows: 

 𝑅𝑚 =
𝐶𝑒𝑞
η1η2

 (2.25) 

 𝐶𝑚 =
η1η2
𝑘𝑒𝑞

 (2.26) 

 𝐿𝑚 =
𝑀𝑒𝑞

η1η2
 (2.27) 
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                                                                                                                      Chapter 3
 
 

Development of Piezoelectrically-Transduced Resonator 
 
 

 One of the major advantages of piezoelectric based resonator over capacitively-

transduced resonator is the simplified fabrication process. Due to the piezoelectric effect from 

the material itself, the resonator body can deform upon the presence of an applied electric field 

without the need of complex sub-micron parallel plate gap setup. 

 Another advantage of piezoelectrically-transduced micromechanical resonator is their 

potential to be monolithically integrated with current CMOS technology. One of the major 

challenges of post-CMOS integration is that the process temperature for the MEMS fabrication 

has to be kept below 400 °C which is the allowable thermal budget of CMOS circuitry. As 

mentioned before, the most common type of piezoelectric material are ZnO, AlN, and PZT. 

Since PZT contains the element of lead, it render itself incompatible with most of the state of the 

art CMOS devices and foundry process. Subsequently, it makes ZnO and AlN become the most 

widely chosen material in the past decade for FBAR and SAW devices. However, due to the 

need of multi-function and multi-frequency in modern day systems, contour-mode type of 

devices have more appeal to the future. 

The fabrication process utilized to manufacture the piezoelectrically-transduced 

resonators studied in this work is presented in this chapter. Based on the type of the wafer used, 

two different types of piezoelectrically-transduced resonator can be obtained. If a bare silicon 

wafer is used, the resonator is called the piezoelectric thin film resonator where the piezoelectric 
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material serves as both the transducing and resonating elements. If silicon-on-insulator (SOI) 

wafer is used, the end product will be considered as TPoS, where silicon is used as resonanting 

structure, and ZnO film is used as the piezoelectric transducer. All the piezoelectric related 

resonator works reported in this work are all done in the TPoS configuration. 

3.1  Selection of Material 

The final material used in the development of micro-mechanical resonator in this work 

was made after considering device performance, available tools, and ease of processing in the 

Nanotechnology and Research Education Center (NREC) at the University of South Florida. 

Two materials were initially considered and tested: ZnO and AlN. PZT was not even considered 

though it provides the highest transverse piezoelectric coefficient (𝑑31) and shall yield the best 

device performance, but the lead element within PZT tends to contaminate the processing 

equipment, which is not suitable for a multi-user facility like NREC. AlN has the higher acoustic 

velocity and relatively low acoustic losses when compared to ZnO, nevertheless, it requires 

chlorine gas based reactive ion etching system in order to pattern the AlN film which is not 

available at our school.  

 ZnO is ultimately selected for the development of resonator due its ease of processing. 

Compared to AlN sputtering deposition, ZnO does not require the use of reactive ion sputtering, 

and it can achieve 100 nm/hr deposition rate, whereas the rate for AlN is merely 30 nm/hr based 

on our preliminary experiment. Considering the resonator will require up to 400 to 700 nm thick 

of piezoelectric layer, ZnO is the obvious choice. Another advantage of ZnO is the availability of 

CH4/Ar dry etching recipe offered by the deep reactive ion etching (DRIE) system. This 

enablement is critical in producing piezoelectric resonators, since dry etching provides more 
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precise control over dimensions and exhibit nearly straight sidewalls. Table 3.1 summarizes the 

important properties of the three most common piezoelectric materials. 

Table 3.1 – Properties of piezoelectric materials 
 

Material Properties  ZnO [34] PZT [35] AlN [35] 
Density [kg/m3] ρ 5676 7600 3260 
Young’s Modulus [GPA] Ε 123 53 330 
Acoustic Velocity [m/s] υp 6630 3300 10400 
Poisson Ratio µ 0.18 − 0.36 0.25 − 0.31 ∼0.24 
Piezoelectric Strain Coefficient [pC/N] d31 -4.7 -130 -1.8 
Electrical Resistivity [Ω⋅cm] ρe 108 − 109 107 − 109 1010 − 1014 

 

 

3.2  ZnO Characterization 

The key to achieve the highest performance of the ZnO resonator is obtaining a high 

transverse piezoelectric coefficient (d31) piezoelectric film. The contour-mode resonators vibrate 

within the lateral dimension while the electrical field is applied orthogonally through the 

piezoelectric transducer layer, so a highly c-axis orientated ZnO films are desirable for the 

development of the contour-mode resonators. To obtain the best quality film, a systematic study 

on the quality of the ZnO films has been carried out. Two of the sputtering deposition 

parameters, oxygen concentration and termpaerature, have been varied and documented. The 

quality of the films are then determined by using x-ray diffraction (XRD).  During the 

experiments, the substrate to target distance, the deposition base pressure (5 mtorr), and the RF 

power (100W) are kept as constant. 

3.2.1 Effects of Oxygen Concentration 

Unlike AlN reactive ion sputtering, ZnO is sputtered directly through a 99.99% ZnO 

sputtering target. In theory, it is possible to sputter ZnO thin films without the need of extra 

oxygen. However, as the sputtering target is bombarded by the argon plasma ion, some ZnO 
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molecule will disassociate after leaving the target forming free zinc and oxygen species. The 

overall film quality is then lowered if the free zinc atom reaches the substrate and incorporates 

itself within the film. Therefore, the presence of oxygen is needed to compensate for this loss and 

allowed the zinc atoms to recombine and form ZnO again [41, 42]. 

 This experiment is setup to study the change in ZnO thin film’s quality under different 

argon to oxygen ratio. The oxygen percentage is set to four different ratios: 20%, 30%, 50%, and 

70%. The rest of deposition parameters such as power and pressure are kept at the conditions 

stated above (100 Watt and 5 mtorr). The deposition temperature is set to 300 °C. Figure 3.1 

shows the XRD spectra for the ZnO thin films deposited under different oxygen concentrations. 

The XRD peaks indicates all four films are c-axis orientated. As the oxygen concentration 

increased from 20% to 50%, the dielectric effect becomes stronger. When the oxygen 

concentration is increased beyond 50%, it shows degradation in the quality. In the end, 50% 

argon to oxygen ratio is chosen for the development of piezoelectric resonator. 

 
 

Figure 3.1 – XRD curves for ZnO samples deposited at different oxygen concentrations [40]. 
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3.2.2 Effects of Substrate Temperature  

 Once the oxygen concentration is determined, we start varied the deposition temperature 

and examine its impact on the film’s quality. Substrate temperature plays an important role in 

determining the film’s quality. The surface temperature of the substrate greatly effects the 

sputtered particles’ energy once it hit the substrate which greatly effects the formation of the thin 

film. Several depositions ranging from room temperature to 300 °C are carried out, and the 

results are shown in Figure 3.2. From the XRD spectra, the film deposited at 300 °C exhibits the 

strongest (002) peak intensity. At higher temperatures, the intensity maintains the same order of 

magnitude, however, due to the grain increase in grain size, the FWHM, sharpness, decreased 

gradually. 

 
 

Figure 3.2 – XRD curves for ZnO samples deposited at different substrate temperatures [40]. 
 

In summary, the final ZnO thin deposition recipe used throughout this work is: 100 Watt 

RF, 5 mtorr base pressure, 300 °C substrate temperature, and 50% oxygen to argon ratio. 
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3.3  Fabrication Process for Thin-film Piezoelectric on Silicon 

 Figure 3.3 below shows the cross-sectional fabrication process for the TPoS piezoelectric 

resonators that uses ZnO piezoelectric thin film. This process begins with etching away the 

buried oxide layer so the resonating body is suspended. The release is done by submerging the 

wafer with pre-etched through holes under a 49% hydrofluoric acid (HF) for 75 minutes. Since 

HF attacks ZnO aggressively, the release process has to be done before the deposition of ZnO. 

The bottom electrode is then deposited and patterned onto the wafer. The material of choice for 

the bottom electrode is platinum (Pt). Other metals such as molybdenum (Mo), aluminum (Al), 

and gold (Au) were considered for the bottom electrode, however, these materials proved to be 

problematic during the subsequent fabrication process. Aluminum and molybdenum are 

appealing for its mechanical properties. They have low acoustic loss and high acoustic velocity 

when compared to platinum. Nonetheless, both materials oxidized too easily due to the high 

temperature and oxygen presence during the sputtering of ZnO, which not only lower its own 

conductivity, but also reduce the quality of the piezoelectric film. On the other hand, gold has 

wonderful conductivity and doesn’t oxidize under our process condition. However, the presence 

of the gold film on the wafer prohibits the use of the most optimal temperature for the deposition 

of ZnO film. At around 300 °C, gold have the tendency to spiking into the ZnO thin film and 

render the whole process short circuited. After the formation of bottom electrode, ZnO (500 nm 

in thickness) is then sputtered onto the wafer using the condition stated in previous section, and 

followed by a deposition and patterning of the top electrode, aluminum. A light density material 

is chosen here because aluminum has the minimal loading effect. Via holes for access to the 

bottom electrode underneath the ZnO layer is opened using diluted hydro chloric acid (HCl : 
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H2O = 200 : 1). Finally, ZnO and the Si device layers are patterned using DRIE. A layer of gold 

pad is added here for the convenience of coplanar waveguide (CPW) probing measurement.  

  
(a) (b) 

  
(c) (d) 

 
Figure 3.3 – Five-masks post-CMOS compatible fabrication process of thin-film piezoelectric-
on-silicon (TPoS) resonator. 
 

 Figure 3.4(a) shows a SEM photo of a ZnO-on-SOI resonator using the fabrication 

process depicted above. Figure 3.4(b) shows a close-up view of the DRIE etched sidewall profile 

of a ZnO-on-SOI resonator. Ideally, the highest device performance can be achieved when the 

sidewall for both the piezoelectric layer and the Si device layer are perfectly straight. From the 

close-up view, it is clearly shown that the in-house ZnO etch recipe produced nearly vertical 

sidewall. The scalloping profile observed along the sidewall of the Si device layer can be 

attributed to the characteristics of the DRIE’s Bosch process used to etch the silicon. This non-

straight profile could potentially affect the performance of the fabricated resonators as 

demonstrated in [28]. Although achieving perfectly straight side wall is possible with further fine 

tuning of DRIE recipe, it is not in the scope of this work.  
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(a) 

 
(b) 

 
Figure 3.4 – (a) SEM photo of a TPoS resonator fabricated using the process described above. 
(b) A close-up view of a TPoS resonator fabricated on an 8 µm device layer SOI substrate with 
500 nm thick of ZnO. 
 

3.4  Experimental Results 

The fabricated micromechanical resonators are tested by on-wafer probing using a RF 

probe station under atmospheric pressure and room temperature. The scattering parameters (S-
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parameters) of the devices are extracted using an Agilent 8753E vector network analyzer (VNA). 

A Short-Open-Load-Thru (SOLT) calibration using GGB CS-5 calibration substrate is performed 

before extracting each device’s S-parameter. Figure 3.5 below shows the measurement setup 

used in extracting the S-parameter data. 

 
 

Figure 3.5 – Experimental set up for on-wafer probing of MEMS resonators. 
 

 The advantage of TPoS resonators over traditional piezoelectric resonators is the 

separation of transducing and resonating mechanisms. Traditional piezoelectric resonators rely 

on the piezoelectric layer to acts as both functions, which means the end results highly depends 

on the piezoelectric material itself. From chapter 2, it shows the resonant frequency, Q factor, 

and performance are highly regulated by the material properties, therefore, traditional 

piezoelectric resonator design is locked into the chosen material providing minimal design of 

freedom. By separating the two, one can use mechanically sound materials such as crystalline 

silicon and diamond to act as the resonating structure and only use the piezoelectric layer to 

actuate it. By doing so, the device can achieve higher quality factor. Due the availability of SOI 

wafers, it has greatly simplified the process of making devices in such configuration. In TPoS 
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resonators, the acoustic energy is mostly contained within the SOI wafer’s low acoustic loss Si 

device layer, which leads to improved quality factor as compared to a traditional piezoelectric 

resonator counterpart. In this work, various contour-mode disk resonators are fabricated using 

SOI wafers with 6 µm and 15 µm thick Si device layer. 

 
 

Figure 3.6  – Frequency response of a 60 μm × 150 μm TPoS plate resonator with 15 μm Si 
device layer excited in its fundamental extensional contour-mode. It is showing a Q of 3170 at 
63.4 MHz 

 

 Figure 3.6 presents a 60 μm by 150 μm piezoelectric-on-silicon plate resonator operating 

in its fundamental extensional contour-mode at 63.4 MHz with a measured Q of 3,170. The 

resonator body is composed of a 15 µm thick silicon device layer and a 500 nm-thick ZnO 

piezoelectric layer. This device’s anchor width is 6 µm. The length of the anchor is quarter 

wavelength long with respect to its resonant frequency which minimizes its damping loss to the 

overall structure. Due to the improved quality factor (Q ~ 3,100), the device is able to achieve 
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motional impedance in the order of hundred-ohms. In order to explore the impact of the silicon 

device layer thickness, an identical device with 6 µm Si device layer is fabricated and measured 

as well.  As can be seen in, both the motional resistance and quality factor decreased when 

compared to its 15 μm counterpart. Few interesting conclusions can be drawn here. First, when a 

TPoS resonator vibrates, it is the actuation layer, ZnO, that excites the Si resonating body. When 

a thicker, in other words, heavier device layer is used, this mechanical motion is damped due to 

the fact that the same amount of piezoelectric force now needs to drag along a bigger amount of 

mass. Therefore, the overall electrical-mechanical coupling coefficient is attenuated, resulting in 

a weaker electrical signal and higher motional impedance. As verified by the measurement 

results, the motional resistance increased by 20% when a 15 µm Si layer is used instead of 6 µm. 

 
 
Figure 3.7 – Frequency response of a 60 μm × 150 μm TPoS plate resonator with 6 μm Si device 
layer excited in its fundamental extensional contour-mode. It is showing a Q of 1510 at 59.8 
MHz. 
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As opposed to the motional resistance, the quality factor increases when thicker Si layer 

is used. This behavior is caused by mass loading effect as expressed in equation (2.9). In a TPoS 

configuration, a thick layer of Si device layer means the dominant material is the Si which is a 

low acoustic loss material. If thinner Si device layer were used, the relative proportion of 

piezoelectric and metal layers increased, and hence the decrease in overall quality factor.  

Another worthy observation here is the shift in resonant frequency. By mathematical 

formula (Eq. (2.20)), the resonance frequency with such dimension should be 68 MHz. Even 

though both devices have the same dimension, the resonance frequencies for 6 μm and 15 μm Si 

layer devices are 59.8 MHz and 63.4 MHz, respectively. This also can be explained by mass 

loading effect. The equivalent phase velocity of a TPoS resonator with 15 μm Si layer device is 

closer to a pure Si resonator, and as a result, the resonance frequency is closer to the ideal value. 

Therefore, a trade-off must be made between quality factor and motional resistace. Based 

on the measurement results and the behavior observed, the optimal device layer thickness should 

reside within 8 µm to 12 µm for 500 nm thick piezoelectric ZnO layer. 

 
 
Figure 3.8 – SEM picture of a 60 μm × 150 μm TPoS plate resonator fabricated on SOI wafer 
with 15 µm-thick device layer. Device shown here is a 2-port configuration with splitted top 
electrodes. 
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3.5  Piezoelectric RF MEMS Filter 

The goal of this dissertation work is to develop MEMS resonator that can meet today’s 

industry and market demands for complete system-on-a-chip solution. Up to this point, we have 

solidify the idea of contour-mode piezoelectric MEMS resonators have quality factor and 

performance as good as BAW and SAW devices, while satisfying the stringent requirements for 

single-chip multi-frequencies applications. The ultimate goal out of all this is to use the 

developed resonator and produce RF band bass filter for miniaturization of the transceiver. The 

MEMS filters need to have characteristics such as high selectivity, low insertion loss, and 

excellent out-of-band rejection, but it also needs to be compatible with standard CMOS process. 

Though not the focus of this work, this section attempted in building RF bandpass filter using 

piezoelectric MEMS resonator, which shows the huge potential of RF MEMS device for future 

applications in wireless telecommunication system. 

3.5.1 MEMS Filter Operating Theory 

Depending on the coupling method, usually multiple constituent resonators need to be 

couple together to form a filter response [39, 43, 44]. For example, in mechanical beam coupling 

method; it uses a beam, which acts as a spring, to connect two vibrating bodies together, 

therefore, forming in/out of phase response that constitutes a filter response. See Figure 3.9 

below for a detail illustration. There are many ways to couple individual MEMS resonator into a 

configuration that has a filter characteristic. Some are done mechanically (e.g. beam coupling 

method) [45, 46], and some are implemented through electrical domain (e.g. capacitive coupling 

method) [47]. Since this section is just a demonstration of the possibility of MEMS resonator as 

a potential RF filter, acoustic coupling method is chosen for simplicity reasons. 
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Figure 3.9 – Illustration of the working principle for a mechanically-coupled resonator filter 
vibrating in (a) in-phase mode; (b) out-of-phase mode; with (c) predicted bandpass frequency 
characteristic; and (d) electrical equivalent circuit model [40]. 
 

Acoustic coupling is one of the easiest filter coupling method [48]. Unlike electrically 

and mechanically coupled methods, it does not require the use of multiple resonators in order to 

form a filter response. It uses two closely-spaced orthogonal resonances from a single 

piezoelectrically-transduced plate resonator. This filter synthesis technique removes the need for 

additional mechanical coupling elements (i.e. beam and capacitance) which improves the design 

accuracy while demanding minimum fabrication effort. 

Figure 3.10 and Figure 3.11 show examples of acoustically coupled monolithic filter. It is 

shown in both figures that an acoustically-coupled filter is very similar to a plate resonator 

shown in section 3.4, however, by strategically placing the top electrode, a second resonance 

mode can exist within close proximity. In the symmetric mode, the entire resonating body are in-
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phase (Figure 3.10(a)), whereas in the asymmetric mode the two halves of the body are 180º out 

of phase (Figure 3.10(b)). 

fo = 67.58 MHz 

 

fo = 69.46 MHz 

 
(a) (b) 

 
Figure 3.10 – Simulated dual fundamental length-extensional mode of a 60 µm x 30 µm ZnO 
plate resonator (a) symmetric resonance-mode and (b) asymmetric resonance-mode. 
 
 

fo =  67.87 MHz 

 

fo = 68.97 MHz 

 
(a) (b) 

 
Figure 3.11 – Simulated dual fundamental length-extensional mode of a 70 µm × 30 µm ZnO 
plate resonator (a) symmetric resonance-mode; and (b) asymmetric resonance-mode. 
 



www.manaraa.com

 

47 
 

As is shown in Figure 3.11, by varying the dimension of the plate, both modes’ resonant 

frequency shifted slightly resulting in smaller bandwidth. Therefore, it can be concluded that the 

bandwidth of an acoustically-coupled filter can be fine-tuned from the CAD layout design. 

 
(a) 

 
(b) 

 
Figure 3.12 – (a) Equivalent electrical circuit  model for a 2nd order  acoustically-coupled filter; 
(b) Normalized frequency response for a 2nd order  acoustically coupled filter [40]. 
 

Unlike mechanical beam coupled filter, the two adjacent mechanical vibration modes in 

an acoustically coupled filter is coupling through the device itself. The equivalent electrical 

circuit model for 2nd order acoustically-coupled filter is shown in Figure 3.12. The coupling 

element in this model is represented by an inductor, 𝐿𝑐. 

3.5.2 Experimental Results 

Figure 3.13 shows the frequency response of a fabricated thin film piezoelectrically-

transduced monolithic filter with center frequency at 115 MHz. The device dimension is 100 µm 
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by 200 µm. As mentioned previously, if the length that defines the in-phase resonance frequency 

is set to constant, the bandwidth will shift when the width is varied. Figure 3.14 shows the 

frequency response for the same monolithic resonator but with the width decreased to 190 µm. 

Compare the two measured frequency responses, the bandwidth of the synthesized filter changed 

from 0.83% to 1.2% as a result of a 10 µm variation in the width of the plate resonator. 

  
 
Figure 3.13 – Frequency response for the fabricated 115 MHz monolithic filter with 100 µm x 
200 µm lateral dimensions. 
  

 
 
Figure 3.14 – Frequency response for the fabricated 114 MHz monolithic filter with 100 µm x 
190 µm lateral dimensions. 
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It is worth noting that there is no closed-form mathematical solution to predict the 

secondary dimension’s effect on the filter bandwidth. The design process for acoustically-

coupled MEMS filter usually involves the use of finite element modal analysis. Softwares such 

as Comsol and CoventorWare are used in optimizing the dimensions of the micro-structure for 

obtaining the desired resonance frequency and bandwidth. The drawback for acoustically-couple 

filter is that the maximum obtainable bandwidth is smaller than mechanically- and electrically-

coupled counterparts. Like every engineering solution, there is always trade-off between loss, 

bandwidth, and rejection. Further design theory and analysis of RF MEMS filter can be found in 

the work by J. Dewdney [40]. 
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                                                                                                                      Chapter 4
 
 

Development of Electrostatically-Transduced Resonator 
 
 

From the fabrication point of view, piezoelectrically-transduced resonator has a huge 

advantage over electrostatically-transduced counterpart. Piezoelectric resonators do not required 

sub 100 nm parallel plate gap, which is quite complicated to achieve. Nonetheless, this 

disadvantage does not stop capacitively-transduced resonator from becoming one of the most 

well developed and studied technologies for the past decades. Unlike piezoelectric type 

resonators, which can only be built from a very limited selection of piezoelectric materials, 

capacitive resonators can be made from literally any conductive material with appropriate 

mechanical properties. Previous research works have demonstrated it can be made from metals 

such as nickel [49, 50] or non-metals material like crystalline Si and diamond [51, 52]. It is 

entirely possible to build capacitive resonator from Si alone without using any metals or exotic 

dielectric material. This advantage alone gives the edge to capacitive resonators being more 

capable at integrating with CMOS technology than piezoelectric resonators. In addition, 

capacitively-transduced resonator has a built-in on/off switch that is needed in MEMS enabled 

transceiver introduced back in section 1.3. This eliminates the need of incorporating additional 

switches in front the bandpass filter bank, which further reduces the footprint and complexity of 

the transceiver. 

The capacitive resonator’s working principle is similar to the piezoelectric counterpart. 

The goal is to excite the vibration body mass into its resonance mode. However, unlike 
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piezoelectric materials, which the piezoelectric film can deform upon the presence of electric 

field, electrostatically-transduced resonator required the use of parallel plate electrostatic force to 

provide the necessary physical excitation. 

 As mentioned before, the biggest drawback to capacitive resonators is the complexity of 

the fabrication process. To build a state of the art capacitive resonating device, the process 

usually involves relatively more photolithography steps, and more sophisticated equipment such 

as LPCVD, furnace anneal, and low-stress nitride film [23]. One of the contributions of this work 

is the successful development of a fabrication process that greatly simplified the process of 

producing electrostatically-transduced resonators with sub 100 nm parallel plate gap. The newly 

developed process utilize processing techniques such as atomic layer deposition (ALD) and 

chemical mechanical polishing (CMP) to reduce the processing steps down to merely two photo 

mask sets. This chapter presents the fabrication process and experimental results of a capacitive 

resonator fabricated from the newly developed process. 

4.1  Atomic Layer Deposition 

Atomic Layer Deposition (ALD) is one of the keys to the enablement of the newly 

developed and simplified process for the making of capacitive resonators. ALD has many 

advantages such as uniform coating over a large area, precise control of thickness, and high 

aspect ratio conformal coverage [53, 54]. ALD is a self-limiting process that gives users precise 

control over its thickness. At each cycle, gaseous precursor is introduced into the chamber and 

reacts with the substrate’s surface. ALD has excellent conformal coverage due the gaseous 

nature of the precursor. Precursor atoms are then absorbed to the substrate surface with the 

excess atoms being purge out [55].  During an ALD deposition process, usually two precursors 

are sequentially pulsed into the chamber, and the pulses are separated by a purge with inert gas, 
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so the two precursors never see each other. Without adequate purge time in between, the two 

gaseous precursors will come in contact with one another and form chemical vapor deposition 

(CVD) that could contaminate the entire deposition system and the film. 

 
 

Figure 4.1 – Schematic showing of ALD self-limiting process [55]. 
 

The system used for the development of this work is from Cambridge Nanotech Inc. – 

model Savannah 200. The ALD thin film is incorporated into capacitive resonator as the 

dielectric gap filler material. Depending on the material used, the dielectric material can either be 

used as a solid gap material to enhance the capacitance, or as a sacrificial material that can be 

later removed forming sub 100 nm air gap within the resonator. In this work, two materials were 

used in the development of capacitive resonators: Hafnium Oxide, HfO2, and Aluminum Oxide, 

Al2O3.  

4.2  Chemical Mechanical Polishing 

Another key element of the newly developed fabrication process is chemical mechanical 

polishing (CMP). CMP is commonly used in the MEMS fabrication to achieve smooth and 

planar surfaces on wafers or to bulk remove target material [56, 57]. The CMP process consists 

of three major components: polishing pad, specimen carrier, and abrasive slurry. The wafer is 
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attached to the carrier and rotates against the polishing pad. The polishing pad helps transferring 

the slurry’s abrasive forces to the substrate removing materials from the surface. 

 
 
Figure 4.2 – Schematic illustration of CMP process. ωs and ωp refer to angular velocity of carrier 
and platen respectively [58]. 

 

In a typical CMP process, the slurry is usually an aqueous solution with certain PH level 

that accelerates the removal rate of targeted material. For our specific purpose, we tuned the 

CMP process to have a more uniform removal pattern and rate regardless of the materials being 

polished. This is achieved by leaning more towards the mechanical aspect of the CMP process by 

using diamond abrasive slurry. Because diamond is much harder than most materials, the process 

was able to attain relatively more uniform rate of removal with respect to a variety of materials 

such as copper and silicon. The system used here is Logitech PM5 lapping/polishing machine, 

and the carrier fixture is South Bay Technology VersaLap 164DV. The abrasive slurry used is 3 

micron diamond suspension. 
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4.3  Fabrication of Electrostatically-Transduced Resonator 

 Figure 4.3 below depicts a two masks fabrication process of a capacitive resonator. This 

greatly simplified fabrication process is achieved through the use of silicon-on-insulator (SOI) 

wafer. First the wafer is patterned by the DRIE to define the resonator body, and then followed 

by ALD dielectric layer and metal seed layer depositions. Thick metal side electrodes are plated 

in selected area defined by the patterned photoresist. The substrate is then planarized from the 

top uniformly until the Si layer interface is exposed. The device is then released by etching away 

the photoresist, metal seed layer, dielectric film, and finally the buried oxide. Figure 4.3(e) 

shows the optical image of a fabricated disk resonator completed with GSG gold probe pads. 

  
(a) (b) 

  
(c) (d) 

 

 

(e)  
 

Figure 4.3 – Two steps photolithograph process of capacitive resonator. 
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Figure 4.4(a) below shows a SEM photo of a capacitively-transduced resonator using the 

fabrication process depicted above. Figure 4.4(b) shows a close-up view of the parallel plate 

capacitor gap formed by using ALD dielectric gap spacer. 

 
(a) 

 
(b) 

 
Figure 4.4 – (a) SEM image of a capactively-transduced resonator. (b) Close-up view at the 
parallel plate gap. 
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4.4  Experimental Result 

The capacitive micromechanical resonators’ S-parameters are extracted using the same 

calibration and equipment as the piezoelectric resonators. Since the operating principle is 

electrostatic actuation, DC voltage is supplied through the addition of bias-tees. The test is also 

done by on-wafer probing using a RF probe station under atmospheric pressure and room 

temperature.  

 
Figure 4.5 – Experimental set up for on-wafer probing of the capacitive micro-resonators. 

 

Figure 4.6 presents the S-parameter of a 24 µm-diameter disk resonator operating in its 

wine-glass mode. Both on and off states of the resonator response were measured. The on and off 

states are achieved through switching the DC bias voltage on and off. Due to a mis-calculated 

mistake (will be discussed later), the response of the resonator is severely attenuated. Moreover, 

the parasitic feedthrough signal masked and distorted the true response of the resonator. As 

shown in Figure 4.6, the overall resonating peak wasn’t even 3 dB higher than the noise floor, 

therefore making it hard to extract data such as quality factor. 
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Figure 4.6 – S-parameter for the 24µm disk resonator vibrating in wine-glass mode. (a) As 
measured S-parameter with device bias on (17 Vp) and off (0 Vp). 
 

Parasitic feedthrough signal is an impediment that is inherent to all types of micron scale 

resonant devices, resulting in increased challenges to their integration with other electrical 

circuits, particularly as devices are scaled to operate at higher frequencies for RF applications. 

Particularly, electrostatically-transduced micromechanical resonators are vulnerable to the 

parasitic elements due to its parallel plate capacitors that appears across the input and output 

ports. Figure 4.7(a) below is a greatly simplified equivalent circuit model of a mechanical 

resonator. 

The inductance (Lm), capacitance (Cm), and resistance (Rm) correspond to the inertia, 

compliance, and damping of the mechanical systems, respectively. There is also a parasitic 

capacitance, Cf, connecting the input and output of the system, which represent the feedthrough 

signal path. Such leakage is usually caused by the electrical signal traveling between electrodes 

directly through the substrate and resonator structure body without going through the electrical-

mechanical transformation of the system. 
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(a) (b) 

 
Figure 4.7 – (a) Electrical equivalent circuit of a mechanical resonator. (b) Simulation of Cf’s 
effects on the resonator’s transmission response. 
 

High leakage current leads to distorted, masked transmission response, and it diminishes 

mechanical resonators’ supposed sharp roll off rejection band. The influence of the leakage 

current became even more significant at higher frequencies. Figure 4.7(b) demonstrates the 

effects of the feedthrougth capacitance on an ideal resonator. The parallel resonance caused by Cf 

could easily distort the response and generate asymmetricity within the transmission response 

resulting in great challenges for it to be used as reliable mechanical resonators and filters, let 

alone interfacing with other transistor circuits. 

In order to better understand the device behavior, one technique is used here to post 

process the data to eliminate the effects of the leakage signal contributed by the parasitic 

capacitance. As depicted in following Figure 4.8, a capacitive resonator’s electrical response can 

be attributed to two parallel circuits: the LCR resonator body, and the leakage feedthrough, Cf. 

When the device is turned on, the measured response is contributed both by the Cf and the LCR 

circuits. When the device is turned off, the LCR components became inactive, while the 

measured response is solely contributed by the feedthrough circuit. By theory, performing vector 

subtraction between the on and off transmission parameters, the feedthrough portion is canceled 

out yielding the theoretical LCR response of the resonator. 
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Figure 4.8 – Transmission response vector subtraction. 
 

Figure 4.9 below shows the ideal transmission response of the aforementioned resonator. 

It is clearly shown that the superiority in Si mechanical properties over piezoelectric material 

resulted in quality factor above 10,000. However, due to the high insertion loss, the motional 

impedance is on the order of mega-ohms, which renders it unfeasible to be integrated with 

traditional IC circuitry. 

 
 
Figure 4.9 – S-parameter for the 24µm disk resonator vibrating in wine-glass mode. (a) As 
measured S-parameter with device bias on (17 Vp) and off (0 Vp). 
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The motional resistance, Rs, of a capacitivley-transduced resonator is governed by the 

following equation [59]: 

 𝑅𝑠 =
𝑘𝑟

𝜔0𝑄𝑉𝑝2
∙ �
𝜕𝐶
𝜕𝑥
�
−2

≅
𝑘𝑟

𝜔0𝑄𝑉𝑝2
∙

𝑑04

𝜀𝑟2𝜀02𝐴2
 (4.1) 

Therefore, varying the bias voltage (Vp) will change the resonator’s electrical response. 

Transmission S-parameter with respect to voltage is plotted in Figure 4.10 below. The motional 

impedance is inverse proportional to the second power of the bias voltage, hence by increasing 

the DC bias voltage, Vp, it will effectively reduce the total motional impedance. When the bias 

voltage is increased from 10 V to 17 V, the motional impedance shows a drop from 7.8 MΩ to 

2.7 MΩ. 

 
 
Figure 4.10 – Resonating transmission response of the disk resonator under various DC bias 
conditions. 
 

4.5  Formation of Parallel Plate Capacitor Gap 

The high insertion loss is caused by a mistake during the fabrication process. The plating 

seed layer (300 nm) and ALD dielectric layer (80nm) was much thicker than necessary. The 
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combined layer thickness caused a major flaw during the final device release step. As Figure 

4.11 depicts below, during wet chemical release of nano-gap devices, it often relies on the 

surface tension of the wet chemical to prevent etching of the junction gap. However, during the 

seed layer removal, 300nm was wide enough to diminish the effects of surface tension which 

allowed the chemical to easily etch deep into the seed layer at the junction. This results in a big 

opening for the subsequent HF oxide release which now has a big contact surface with the 

dielectric material. All in all, this resulted in a wide air gap with inconsistent junction gap as 

opposed to the planned 100 nm solid gap (Figure 4.11(b)). As suggested in equation (4.1), the 

motional impedance is direct proportional to the gap distance, d0, to the fourth power, therefore, 

a small variation in the gap could have enormous effect on the overall impedance of the 

resonator. Fortunately, this mistake was a not a result in the device design rather a miscalculated 

fabrication run, which can be easily corrected. 

 
(a) 

 
(b) 

 
Figure 4.11 – (a) Junction structure before the device release. (b) Wide opening caused the 
etchant to seek through the junction resulting in inconsistent junction gap. 
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                                                                                                              Chapter 5
 
 

Micromechanical Resonators Applications Using SOI Wafer 
 
 

Chapter 5 here presents applications and ideas that are made possible due to the use of 

SOI wafer. SOI technology is one of several manufacturing strategies employed in the industry 

to allow the continued miniaturization of microelectronic devices. In conventional integrated 

circuit design, SOI wafer provides benefits such as lowered parasitic capacitance and improved 

electrical isolation. However, the unique layered structure of SOI wafer provides MEMS 

technology another degree of freedom in designing devices. Clearly, the works shown in 

previous sections have demonstrated the benefit of SOI technology in simplifying the fabrication 

process of MEMS resonator. In this chapter, a unique yet simple way of tuning the frequency 

response of a MEMS resonator will be demonstrated. Thanks to the extra Si layers provided by 

SOI wafer, by strategically selecting the resistivity of the device and handle layer, a frequency 

tuning configuration can be easily surmounted. Needless to say, the effectiveness of SOI wafer in 

reducing the parasitic feedthrough plaguing the performance of micromechanical resonators will 

also be explored.  

5.1  Single-Mask Nano-Gap Electrostatically-Transduced MEMS Resonator 

In Chapter 4, a two-steps fabrication process for making capacitive resonator is presented. 

This section introduces yet another technique that is even more simplified. It is possible to 

fabricate a capacitive resonator with nano-meter gap by only one single photolithography mask. 

From previous sections of this work, fabrication process introduced for piezoelectric and 
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capacitive resonators are CMOS compatible. However, due to the nature of the materials and 

chemicals used in the fabrication, the processes are more likely to be post-CMOS compatible. 

The technique documented here addresses the problem, and it has huge potential to be readily 

deployed in today’s CMOS foundry process. The process only requires the use of one single 

layer of photolithography mask, and the capacitive resonator is made entirely out-of silicon. No 

direct-write methods such as e-beam lithography are used, which makes this process applicable 

in mass production environment as well. Figure 5.1 below depicts the single-mask process flow. 

  
(a) (b) 

  
(c) (d) 

  
(e)  

 
Figure 5.1 – Single-mask fabrication for electrostatically-transduced resonator. 

 

The process begins with a patterned layer of sacrificial material. This material can either 

be silicon dioxide or photoresist such as AZ4620. A thin layer of gap spacer material is then 

deposited over the sacrificial layer. It is optimal to have the gap spacer material to be something 

that can be easily etched away in the subsequent step. In this work, ZnO is chosen to be the gap 

spacer material as it can easily be etched away by diluted hydrochloric acid which does not 

attack any other layers. Another layer of sacrificial material is then spun/deposited over the 
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wafer. CMP planarization or etch back technique is used to expose the vertical spacer gap 

opening. After, etching away the gap spacer material, the sacrificial layer becomes the mask 

layer used for DRIE Si etching. SEM pictures (Figure 5.2) shown below is the nano-gap hard 

mask with 280 nm openings produced using the single-mask process. The opening width can be 

further reduced by using a thinner gap spacer layer. 

 
 

Figure 5.2 – 280 nm gap generated by using aforementioned single-mask nano-gap process. 
  

After creating nano-gap mask layer, the sample undergoes a specially tuned DRIE Si 

etching recipe created by Plasma-Therm to create the crucial nano-meter gap for capacitive 

resonator. This recipe is specifically made for etching high aspect ratio Si with nano-meter 

opening. As shown in Figure 5.3, the DRIE etch recipe is more than capable of producing high 

aspect ratio Si etch with straight sidewall. The specially tuned etching recipe has no problem 
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processing gap size as small as 100 nm either. Conventional DRIE Si etch recipe tends to shown 

taper effect towards the bottom of the etched trench [60, 61]. The straight-ness in the sidewall is 

critical to the performance of the capacitive resonator. Varying gap distance between the 

electrode and vibrating body can significantly reduce the total effective actuation area and 

electro-mechanical coupling factor of an electrostatically-transduced resonator. 

  
(a) (b) 

 
Figure 5.3 – (a) Plasma-Therm high aspect ratio (50:1) DRIE Si etch with 100 nm openings. (b) 
Close-up view of the etched trench with sidewall roughness of 7 nm. 
 

Unfortunately, there are no S-parameter measurement results for the single-mask nano-

gap capacitive resonator. Though samples completed with nano-gap mask layer have been sent to 

Plasma-Therm for Si etching, it has yet to be completed as of the writing of this work. 

5.2  RF MEMS Resonator and Filter Frequency Tuning 

Frequency tuning is another area that has garnered much attention in the past years. 

Several methods have been proposed over the years. They can be mostly categorized into active- 

and passive-tuning. Active tuning techniques such as electrostatic and electrothermal are 

designed to alter the material mechanical properties (e.g., spring constant) [62, 63]. To the 
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contrary, passive tuning involves changing the resonator’s dimension or equivalent mass by 

using post-deposition and ion milling techniques [64, 65]. It is fairly simple to achieve 

electrostatic frequency tuning configuration with resonators fabricated on SOI wafer. As shown 

in section 3.3, the process used to fabricate the piezoelectric on substrate resonators implemented 

in SOI substrates leave a capacitive gap between the structure and the handle wafer (see 

illustration in Figure 5.4 below). 

 
(a) 

 
(b) 

 
Figure 5.4 – DC bias electrical connection of resonator frequency tuning off (a) and on (b). 

 

If the handle and the device layer are selected to be low resistivity (e.g., 0.01 Ω•cm) and 

given that the device layer is in contact with the bottom electrode, the electrical potential of this 

layer is connected to ground. Applying a DC voltage to the handle layer, an electrostatic force 
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proportional to the device bending of the resonant structure is generated. This force [66] can be 

represented as an electrical stiffness (ke) that is subtracted from the mechanical spring constant of 

the resonator (km) changing its resonance frequency to: 

 𝑓0′ = �
𝑘𝑟𝑒
𝑚𝑟𝑒

= �
𝑘𝑚 − 𝑘𝑒
𝑚𝑟𝑒

= 𝑓𝑜 �1 −
𝑘𝑒
𝑘𝑚

�
1/2

 (5.1) 

where 𝑚𝑟𝑒 is the effective mass of the disk; 𝑘𝑟𝑒 is the effective stiffness at that same location 

with the dc voltage applied; 𝑘𝑚 is the purely mechanical stiffness (i.e., with no voltages applied) 

of the disk. Form the electro-mechanical analogy presented in section 2.6 and the theory of 

parallel plate capacitors, the electrical stiffness of the resonator can be expressed as: 

 𝑘𝑒 = 𝑉𝐷𝐶2
𝐶
𝑑2

= 𝑉𝐷𝐶2
𝜀0𝐴
𝑑3

 (5.2) 

where εo is the permittivity of the free space, A is the area of the resonator tangential to the 

device vibration, and d is the gap distance between the device layer and the handle substrate. The 

relative change in the resonance frequency can be expressed by: 

 
∆𝑓
𝑓0

= −
1
2
𝑉𝐷𝐶2

𝜀0𝐴
𝑘𝑚𝑑3

 (5.3) 

It is worth to mention there is electrostatic force threshold in which this mechanicals 

system goes unstable, causing the resonator to suddenly snap down onto the handle substrate. 

This is known as the pull-down voltage, VP, which is represented as [67]: 

 𝑉𝑝 = �
8𝑘𝑠𝑑3

27𝜀0𝐴
�
1/2

 (5.4) 

where ks does not represent the spring constant of the resonator itself, it represents the combine 

stiffness of the resonator tethers. 

It can be seen from equation (5.3) and (5.4) that both frequency tuning and the allowed 

maximum voltage heavily depend on the gap distance between the bottom of the resonator and 
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the handle substrate. It is critical to find the right balance between the pull-in voltage and the 

frequency tuning percentage. If there is too much of gap spacing, the electrical stiffness induced 

could be insignificant and cause no shift in frequency. On other hand, if there is not enough gap 

distance, the mechanical structure could enter premature failure before any substantial change in 

frequency occurs. 

5.2.1 Experimental Result 

A 30-µm radius ZnO-on-silicon resonator, with 20-µm device layer and 2-µm gap height 

between the device and the handle substrate is electrically connected as shown in Figure 5.4. 

Unfortunately, there is no sign of change in frequency response. It is believed that the gap 

distance, 2 µm, is too big to produce any sizeable electrical stiffness onto the structure. 

Obliviously, fabricating resonator using SOI wafer with 1 µm buried oxide layer is the next 

logical step. However, due to the lack of a properly functioned critical point CO2 dryer at USF 

facility, device releasing with only 1 µm or less buried oxide layer is not possible. For small 

release gap, the surface tension of the water will cause stiction to occur, which will break the 

device entirely when drying the sample. 

An alternative electrothermal frequency tuning method is then pursued. The resonant 

frequency of a resonator is a parameter that is governed by its Young’s modulus, the material 

density and geometry. The temperature coefficient of the resonance frequency (TCF) for 

mechanical resonator is mainly governed by the temperature dependence of the aforementioned 

parameters [51, 68, 69]. The temperature coefficient of frequency is generally expressed in ppm 

per degree Celsius and is given by:  

 𝑇𝐶𝐹 =  
1
𝑓0
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where fo is the resonance at the normal temperature operation point (i.e., room temperature), a is 

the fundamental geometrical parameter that sets the resonator center frequency and T represent 

the temperature of operation. This equation is very general and does not take into account the 

particular mode of vibration of the structure. The third term in equation (5.5) can be eliminated 

due to its low impact on the overall coefficient. The TCF is then expressed in a simplified form 

as follows: 

 𝑇𝐶𝐹 =  −𝛼𝑝 +
1
2
𝑇𝐶𝐸𝑝 (5.6) 

where αp is the thermal expansion coefficient of the vibrating body (piezo, Si, etc.), and TCEp is 

the temperature coefficient of the young’s modulus of the piezo layer or the device layer 

depending on the resonator design. The metal electrodes also contribute to the overall value of 

the TCF, however, they were not taken in account in order to simply model. See Table 5.1 below 

for the typical coefficient number for Si and ZnO. 

Table 5.1 – Thermal expansion coefficient for silicon and ZnO (adapted from [59]) 
 

Material α 𝑻𝑪 

Silicon -2.6ppm/ºC -40ppm/ºC 

Zinc Oxide (-4.4) – (-5.6) ppm/ºC -50 ppm/°C 
 

 

To generate electrothermal heating within the mechanical, the device’s device layer and 

handle layer is intentionally shorted electrically while keeping the DC bias connection the same. 

When bias voltage is applied, a current is drawn which in turns heats up the mechanical 

structure. Results from the shift in the resonance frequency versus the applied voltage are shown 

below. The frequency response of the resonator for three different tuning potentials is shown in 

Figure 5.5. 
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Figure 5.5 – Frequency response of the resonator for three different tuning potentials. 
 

 
 
Figure 5.6 – Resonator frequency tuning characteristics. The device achieves up to 4000 ppm of 
tuning for a voltage of 13 V. 
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As expected, the change in TCF caused the resonance frequency to shift, and the heat 

tuning mechanism is reversible. At 13 V, the current draw is nearly 250 mA, which isn’t ideal for 

modern day’s mobile wireless communication devices due to the high power consumption. It is 

worth mentioning that due to the imperfect post-process electrical shorting, the total current draw 

from the source goes through the entire wafer instead of just one single device. The current draw 

can be greatly reduced provided that proper shortening method is integrated into future 

fabrication process. Nonetheless, this proves MEMS resonators have the potential to be 

incorporated into re-configurable RF front end applications [70]. Overall, the MEMS resonator is 

able to achieve up to 4000 ppm in frequency tuning at 13 V (Figure 5.6). 

5.3  Dual-Transduced Hybrid MEMS Resonator 

Two of the most widely-studied on-chip micro resonator technologies leverage either 

piezoelectric or electrostatic transduction mechanisms. Electrostatically-transduced resonators 

exhibit better temperature coefficient, on/off self-switching capability, and generally much 

higher Q at higher frequencies. It has been demonstrated at operating frequency up to 6.2 GHz 

while still exhibiting Q higher than 4000 [21]. Mixers, filters, and oscillators using capacitive 

resonator as building block have all been proven to work [10]. However, its extremely high 

motional impedance and complicated fabrication process hinder itself from being properly 

implemented into current wireless communication infrastructure. On the other hand, contour-

mode MEMS resonator based on piezoelectric material have been demonstrated with 50Ω 

matched motional impedance, and it’s relatively easy to fabricate. Filters using piezoelectric 

material have shown insertion loss (I.L.) as low as 3dB [32]. However, it lacks any of the 

aforementioned advantages of its electrostatic-based counterpart. 
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Even after all these advancements in mechanical resonators, none of the technologies can 

truly claim being the definitive solution for the much needed single-chip multi frequency RF 

front-end applications. Coincidently, it just so happens that the two transduction mechanisms 

complement each other. Table 5.2 below summarizes the results of the two major types of 

resonators. 

Table 5.2 – Summarized characteristics of electrostatically- and piezoelectrically- transduced 
MEMS resonators. 
 

 Capacitive Piezoelectric 

Quality factor High Moderate 

Fabrication Complicate Relatively easy 

Motional impedance High Low 

Reconfigurability DC bias On/Off None 

Material availability Most of the conductive materials Only mainstream piezo materials 
 

 

A hybrid resonator, combining the low loss acoustic characteristic of an electrostatic 

micro resonator with piezoelectric material’s high electro-mechanical coupling values, could 

have the potential to solve all the problems MEMS resonators are currently facing. The primary 

goal of this section will be focusing on producing a high-Q hybrid resonator that addresses the 

drawbacks of traditional contour-mode mechanical resonators of both types. This dissertation 

work attempts in combining both piezoelectric and capacitive into one hybrid resonator to 

achieve micro-mechanical resonators with low insertion loss and small motional resistance while 

still retains all the other aforementioned benefits. Some may argue that a TPoS (presented in 

Chapter 3) structure is a hybrid resonator, however, this type of device still uses piezoelectric 
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material itself as both the driving and sensing elements. TPoS structure sacrifices some of its 

high electrical mechanical coupling in order to achieve the necessary Q and frequency for the 

intended applications. In the end, what TPoS really achieved is a compromise between 

piezoelectric and capacitive resonators. The hybrid concept presented here truly merges both 

types of resonators into one, not a compromise. It actually segregates the driving and sensing 

electrodes into two different mechanisms. Not only will it exhibit all the benefits of a TPoS 

MEMS resonator, it also inherits the capacitive resonator’s self-switching capability, voltage 

controlled configurability, better thermal stability. Moreover, the electrode configuration of such 

device also allowed the use of a middle ground plane to achieve true input and output isolation. 

With the hybrid design, a designer can produce resonators with multi-port configuration and 

asymmetric input-output characteristic behavior. 

5.3.1 Fabrication Process 

The fabrication process is almost identical to fabricating a capacitive and piezoelectric 

resonator back-to-back. Figure 5.7 below illustrates the fabrication process for the dual-

transduced hybrid resonator. (a) Start with patterning the device layer of the SOI wafer to define 

the Si vibrating body, and then followed by a blanket of plating seed layer and ALD gap 

dielectric film. (b) Photoresist is then defined for selective area copper metal plating. (c) 

Afterwards, the wafer undergoes CMP planarization until the Si interface is exposed completely. 

(d) Bottom electrode is deposited and patterned by lift-off. (e) 500 nm of ZnO is then sputtered 

onto the entire wafer. After depositing and patterning the top electrode, (f) ZnO is etched by 

diluted HCl and DRIE to define the bottom electrode via and resonator body. (g) DRIE is used 

again to create isolation between ports and ground. (h) Finally, the device is released from the 

backside by performing through-wafer etch. 
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Figure 5.7 – Fabrication process of the dual-transduced resonator. 
 

The major modification in this process is the device release method. Wet release method 

from previous fabrication process cannot be used because HF solution attacks the ALD dielectric 

film at an enormous rate. Typically it required approximately forty minutes to fully release a 40 

µm rectangular plate resonator with HF, but it only takes less than five minutes to etch away the 

entire ALD thin film. As shown in Figure 5.7(c), the plated metal sits atop the ALD layer, and if 
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the dielectric layer got etched away entirely, the plated metal will be released from the substrate. 

Therefore, it is chosen to release the resonator device from the backside. SEM picture of the final 

fabricated hybrid resonator is shown in Figure 5.8 below. 

 
 

Figure 5.8 – SEM image of dual-transduced hybrid resonator. 
 

5.3.2 Experimental Result 

Regrettably, due to the extremely complicated fabrication process, (total of nine mask 

layers), the yield rate is almost non-existent. The frequency response could not be reported due 

to several factors. To start with, because of the ALD dielectric material precedes the step of 

device release, it creates major hurdle in releasing the mechanical structure for it to vibrate 

freely. If harsh chemicals such as HF are used, it will eat away the footing of the plated metal 

electrode and cause everything to fell off the surface of the wafer. Backside release was 
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performed to resolve this problem, however, after Si through-wafer etch is complete, removing 

of the buried oxide layer proves to be another major challenge. Using wet chemical such as 

buffer HF (BOE) solution didn’t work as expected. The micro-meter size openings and surface 

tension of the chemical prohibited the solution from entering into the release hole. This 

phenomenon is also known as the bubble blocking. Small bubbles can be seen forming at the 

openings blocking the entry of chemical. Since wet etching method didn’t perform properly, HF 

vapor etch was used in hope of gas vapor can enter deep into the high aspect ratio opening, 

however, even in its vapor form, HF still attacks other layers aggressively. Metal electrodes and 

ZnO layer were all etched away within minutes rendering the whole device inoperable. DRIE dry 

SiO2 etch from the backside didn’t work either. The opening’s aspect ratio was too high for the 

ionized gas molecules to reach all the way through for any chemical reaction to occur. 

This brings up the second factor. ZnO itself was the other bottleneck to this process. To 

etch the oxide, or to form the air gap of the capacitive resonator, using of chemicals such as BOE 

and HF is inevitable. ZnO just happens to be extremely vulnerable to both chemicals. Releasing 

the device meant destroying the ZnO layer. There was no other way around it unless other type 

of piezoelectric material was substituted for ZnO. Aluminum Nitride (AlN) is highly 

recommended for this case. It is impervious to HF, which will make the device release a much 

simpler experience. Moreover, if the AlN is used instead of ZnO, it is possible to eliminate two 

mask layers from the fabrication process simplifying the fabrication process, which hopefully 

will increases the yield rate.  

5.4  Parasitic Feedthrough 

From the experimental result in section 4.4, it is clearly shown the parasitic elements 

deteriorate the performance of micromechanical resonators. There is no doubt all micron-scale 
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resonators suffer from this parasitic effect, and it is usually believed that electrostatically-

transduced resonators are less susceptible to leakage signal. However, prior research works have 

not done justice to this general belief. No efforts have been made for a direct-comparison 

between the two types of resonators. In order to conduct an un-biased comparison, both types of 

resonators need to be fabricated using the same equipment and materials. This section shows the 

result of such comparison.  Not only the resonators are fabricated on the same substrate, but they 

are also fabricated within the same run of process subjecting the devices through identical 

chemicals and temperature annealing treatments. 

The fabrication is done using the process described in section 5.3.1. Each type of 

resonators could be produced by only using certain steps from the nine layers process. The 

following sections will show the comparison between both types of resonators, and the effect of 

the substrate resistivity is also documented. 

5.4.1 Comparison between Capacitive and Piezoelectric Resonators 

The fabricated micromechanical resonators were tested by on-wafer RF probing, the 

same technique and setup used in measuring piezoelectric and capacitive resonators from the 

previous chapters. The measurements presented here are meant to capture the parasitic 

feedthrough signal’s effect to resonators’ wide-span frequency response. Parasitic elements 

become more noticeable at higher frequency. Even though the sweep frequency is much higher 

to the device’s resonant frequency, the measured response is still a valid reference for devices 

designed to operate at higher frequencies. It is worth mentioning that the high Q resonance peaks 

aren’t shown in the measurement plot due to the wide-span measurement settings and low data 

point resolution. 
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Figure 5.9 below shows the measured frequency response for a 60 µm by 150 µm plate 

resonator of three different kinds. Some interesting conclusions can be drawn from this plot. 

First, the figure clearly shown the capacitive resonator with air gap does indeed have better 

overall noise floor response. The capacitive type’s noise floor is 20 dB lower than the 

piezoelectric resonator’s across the whole frequency range. 

 
 

Figure 5.9 – Frequency response from three different types of resonators up to 1 GHz. 
 

This can be explained by the two resonators’ distinctive electro-mechanical transduction 

mechanisms. As illustrated in Figure 5.10 below, piezoelectric resonators rely on the two closely 

placed electrodes on top of the ZnO layer for actuating and sensing operation. Physically, the 

leakage signal (yellow arrow in the figure) can travel through the substrate and the piezoelectric 

material itself. At high frequency, the RF signal can travel through insulator without much 
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difficulty. On the other hand, for an air gap capacitive resonator, the feedthrough signal is limited 

to only the substrate traveling path, since air provides superior signal isolation than any solid 

dielectric. Therefore, the overall parasitic feedthrough signal is considerably less for air gap 

capacitive resonators. This explanation is further confirmed by replacing the air gap with solid 

dielectric material. Without the air gap isolation, the RF signal can now travel freely through the 

actuation and sensing parallel plate electrodes. Because of the nano-meter gap size, the solid 

gap’s feedthrough signal escalated quickly as frequency goes higher, and caught up with 

piezoelectric resonator’s noise eventually. 

 
(a) 

  
(b) (c) 

 
Figure 5.10 – Illustration of leakage feedthrough signal travel paths for different resonators. The 
yellow arrow represents the leakage signals.  
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5.4.2 Comparison between High and Low Resistivity Substrates 

A number of approaches (triple well, guarding ring, through wafer connect, etc) [71, 72] 

have been carried out on minimizing the crosstalk performance within the MEMS device. Wu et 

al. [73] were able to engineer a faraday cage structure into the substrate by combining the use of 

plating and DRIE techniques. 

  
(a) (b) 

 
Figure 5.11 – (a) A faraday cage structure engineered into the substrate. (b) Minimum 20dB 
improvement in transmission across the whole frequency range [73]. 
 

With the input and output electrodes completely isolated, more than 20 dB of 

improvement in cross talking can be obtained even at frequency up to 10s of GHz. However, it is 

extremely challenging to engineer such feature into an already complicated resonator structure. 

A more suitable solution that can be implemented with MEMS devices is the high resistive 

isolation technique. These studies demonstrated potential of minimizing the cross talk between 

input and output by increasing the resistance in the path of the signal feedthrough. 

To demonstrate, piezoelectric MEMS resonators are fabricated on SOI wafers with high 

(> 1500 Ω•cm) and low (10-20 Ω•cm) handle layer resistivity, and the frequency wide-span 

response is measured. Figure 5.12 below clearly shows the resonator sitting on high resistive 

substrate has lower noise floor in overall frequency response. To further clarify the effect of the 
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substrate’s impact on parasitic feedthrough, measurements were taken from special designed test 

structure. The test structure is designed to have all the necessary device layers (Si, metal 

electrodes, piezoelectric, etc) except for the resonating body structure. By taking out the 

resonator, feedthrough capacitiance, Cf  (Figure 4.7), can be eliminated entirely, revealing the 

purest response from the substrate alone. 

 
 
Figure 5.12 – Frequency response from 60 µm × 150 µm resonators residing on SOI substrates 
with different resistivity. 
 

Figure 5.13 below is a schematic representation of the substrate’s parasitic elements [74, 

75]. Lateral elements, Rlat and Clat, are mainly contributed by the cross talking between input and 

output ports through the layers of piezoelectric ZnO and SOI wafer’s device and handle layers. 

Elements such as Rsub and Csub represent the signal traveling path to the grounded bottom side of 

the wafer. Electrode pad capacitance, Cpad, is the capacitors formed between the pad, 

piezoelectric layer, buried oxide, and Si layers.   
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Figure 5.13 – Equivalent circuit model representation of SOI wafer. 
 

The measurement results are shown in Figure 5.14 below. Unsurprisingly, frequency 

response from high resistive wafer exhibits nearly 20 dB lower noise floor which corresponds to 

the results shown in Figure 5.12 very well. The ADS simulated results using the equivalent 

circuit model are shown here as well, and Table 5.3 below summarizes the values of the 

substrate’s parasitic elements. 

Table 5.3 – SOI wafer’s electrical equivalent parasitic elements 
 

 High Resistive Wafer Low Resistive Wafer 

Cpad [fF] 264.8 641 

Clat [fF] 227 262 

Rlat [kΩ] 8.4 5.1 

Csub [pF] 16.8 0.8 

Rsub [Ω] 3110 118 
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Figure 5.14 – Frequency response from test pad structures residing on SOI substrates with 
different resistivity. 
   

One thing worth mentioning here is that the device layer thickness is not the same for 

both high and low resistivity wafers. It is rather challenging to obtain SOI wafers with identical 

parameters. Therefore, the device layer thickness is 6 and 15 µm for low and high resistivity 

wafer, respectively. The difference in device layer thickness is reflected in the value of Cpad, 

which by definition should be the identical if not roughly the same value. The difference in Cpad 

value reflects the change in thickness rather accurately. Rlat and Clat are mainly defined by the 

test structure’s probe pad distance and device layer’s conductivity. Though the device layer 

resistivity is rather low for both wafers (1-5 Ω•cm), the difference in layer thickness yields minor 

shifts in element values. The major difference between the two wafers resistivity is better 

presented by the value of Rsub and Csub. Clearly, there is an order of magnitude difference 

between Rsub due to the difference in substrate resistivity. These reference parameters are useful 

and will help in determining the most appropriate type of wafer to use for the development and 

design of future MEMS resonating devices.   
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                                                                                                                         Chapter 6
 
 

Conclusion and Future Work 
 
 

6.1  Summary and Contributions to the RF-MEMS Field 

 This dissertation research has investigated the design and fabrication of both 

piezoelectrically- and electrostatically- transduced MEMS resonators. High yield CMOS 

compatible process have been successfully developed for both types of resonators, which will 

facilitate future monolithic integration between MEMS and CMOS circuitry on the same chip in 

order to fulfill single chip transceiver integration. The contour-mode devices’ resonance 

frequencies are determined by its in-plane dimensions of the micromechanical structures, which 

allow multiple resonators to operate at different frequencies on the same substrate from a single 

fabrication run. The incorporation of low acoustic loss single crystalline silicon as the structural 

material, improves both the linearity and the quality factor of the resonators. Piezoelectric and 

capacitive resonator with Q higher than 3,000 and 10,000, respectively, are presented in this 

dissertation.  

Filter implementation of piezoelectric MEMS filter has been attempted. Filters operating 

at above 100 MHz with 1.26% bandwidth and 6 dB insertion loss have been demonstrated. It is 

proven that MEMS filters can perform just as well as their purely electrical counterparts while 

also being IC compatible which is suitable for single-chip multi-frequency applications In 

addition, two different greatly simplified fabrication process have been developed for capacitive 

resonators. A two-steps fabrication process for producing capacitive resonator with sub 100 nm 
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actuation gap have been demonstrated. This process has greatly reduced the complexity of 

capacitive resonator which usually requires processing steps of five or six. In addition, some 

preliminary result for a brand new concept of single-mask capacitive resonator fabrication has 

been documented. With this technique, a silicon capacitive resonator with 100 nm transduction 

gap can be produced within a single photolithography step. This technique does not rely on using 

exotic materials or direct-write method, therefore, it is applicable in mass production 

environment. Since the said resonator only consists of Si, the prospect of the single-step 

capacitive resonator integrating with CMOS foundry process is without a doubt. 

Other experimental applications have also been pursued. For a long time, no matter in 

MEMS or in electrical domain, reversible-frequency tuning has always been much desired. With 

the use SOI wafer, such tuning configuration is achievable within the mechanical domain. By 

supplying an electrostatic force to the micromechanical structure, stress is induced onto the body 

which alters the mechanical properties of the structure. Due to uncontrollable factors, alternative 

electrothermal frequency tuning method is presented in this dissertation. By intentionally 

shorting the device and handle layers, a current is drawn when voltage is applied, which in turns 

heat up the micromechanical structure. Using the current heating mechanism, up to 4000 ppm 

frequency shift has been made possible. Furthermore, such tuning mechanism does not introduce 

more complication to the fabrication process. 

A brand new concept of mechanical resonator is introduced in this dissertation. A hybrid 

combination of piezoelectric and electrostatic has been attempted and fabricated. The idea of 

such structure is expected to provide excellent signal to noise ratio while improving the electrical 

mechanical coupling coefficient. 
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6.2  Future Work 

High yield, CMOS compatible MEMS resonator production methods have been 

presented in this work. MEMS resonators have proven to be a worthy candidate for 

implementation of single-chip multi-frequency applications, however, there are still much left to 

be desired. 

Section 3.5 has shown the possibility of MEMS filter performance based on the 

developed resonators. However, there is still room for improvements. Many other aspects such as 

giga-hertz operation frequency, wider bandwidth (> 5%), and lower insertion loss all required 

further research and refinement. A detailed study of different resonator coupling techniques is 

needed for implementing RF MEMS filter within real world wireless communication 

applications. 

Many new concepts have been introduced in this dissertation work. The idea of single-

mask capacitive resonator with 100 nm gap has huge potential to be readily deployed within 

current CMOS compatible foundry. Unlike, piezoelectric or conventional capacitive resonators, 

it can be made within one single-step and out of silicon only. The fabrication process has been 

proven to work, one simply needs to follow up with the idea and continue the work. Further gap 

reduction (< 100 nm) is entirely possible provided the DRIE Si etching recipe is further fine-

tuned and thinner ALD gap spacer is used. 

Frequency tuning of MEMS resonator has been demonstrated. However, the preliminary 

result is achieved through electrothermal current heating and not the proposed electrostatic force 

induced electrical stiffness. It is suspected that the unexpected outcome was due to the actuation 

gap (buried oxide layer) being too wide. Due to the fact that USF does not have a properly 

functioned critical CO2 dry release equipment, it is challenging to release devices with actuation 
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gap less than 1 µm without the device being damaged by stiction [76, 77]. It is recommended 

that future fabrication of such devices on SOI wafer with less than 1 µm buried oxide layer, or 

preferably 0.5 µm thick. Smaller actuation gap will induce more stiffness onto the structure, 

hence, alters the frequency response more significantly. 

This work also introduced the idea of a dual-actuated MEMS resonator by combining 

piezoelectric and electrostatic actuation mechanisms together. The attempted prototype concept 

involves nine layers of photolithography processing steps, which is a truly insufferable 

fabrication process at the academia research level. Due to the amount and complexity of the 

fabrication, the yield rate is almost non-existence. After several prototype tests, it comes to the 

conclusion that the formation of the sub 100 nm gap is critical to the success of the device. If 

solid gap is chosen for the capacitive actuation, the gap material needs to be able to survive the 

rigorous follow-up processing steps without being etched away. Especially during the device 

releasing step, which often involves the use of hydro fluoric (HF) acid. On the other hand, if air 

gap is to be desired, the gap sacrificial material needs to be able to be etched away without 

attacking other pre-existed layers. From the experience of this work, it is highly recommended to 

use Aluminum Nitride (AlN) as the piezoelectric actuation layer. AlN has the advantage of being 

impervious to high concentration HF, which makes it ideal for device releasing and air gap 

formation. Moreover, AlN would introduce loading effect to the silicon resonator body due to 

their comparable acoustic velocity. The added benefit of AlN is the reduction of parasitic 

feedthrough between the input and output ports since AlN has higher electrical resistivity than 

ZnO. 

Instead of the nine steps process presented in previous section, the original proposed 

hybrid resonator fabrication was merely four photolithography steps. 
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(a) (b) 

  
(c) (d) 

 
 

(e)  
 

Figure 6.1 – Original proposed fabrication process for the hybrid resonator. 
 

Figure 6.1 above depicts the original proposed process. The SOI wafer’s Si layer is first 

patterned by DRIE to form the resonator structure, and then followed by a thin layer of ALD 

dielectric film as the gap spacer. PECVD poly-Si is then deposited as the capacitive electrode. 

CMP Planarization is applied to the top of the wafer down to the Si interface, and then followed 

by deposition and patterning of the piezoelectric and top electrode layers. Finally, the release 

hole and poly-Si electrode are etched and defined, and the structure is released by etching away 

the buried oxide layer underneath. PECVD poly-Si can be substituted by plated metal provided 

the metal can survive long duration in HF (e.g. nickel or gold). 

This process can cut the hybrid resonator fabrication process in half, however, due to the 

lack of some critical elements here at USF, this process is put aside for the time being. For 

example, to pattern the top metal electrode and AlN piezoelectric layer, chlorine based dry 
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etching system is essential. In addition, identifying the correct gap spacer material is critical for 

the release of the device. Some other research works have shown by annealing ALD HfO2, the 

dielectric material becomes resistant to HF solution [78], which, in this case, is just what the 

fabrication process needed. 
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